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A B S T R A C T   

Drawing on advances in nonstationary frequency analysis and the science of causation and attribution, this study 
employs a newly developed nonstationary stochastic paired watershed approach to determine the effect of forest 
harvesting on snowmelt-generated floods. Moreover, this study furthers the application of stochastic physics to 
evaluate the environmental controls and drivers of flood response. Physically-based climate and time-varying 
harvesting data are used as covariates to drive the nonstationary flood frequency distribution parameters to 
detect, attribute, and quantify the effect of harvesting on floods in the snow-dominated Deadman River (878 
km2) and nested Joe Ross Creek (99 km2) watersheds. Harvesting only 21% of the watershed caused a 38% and 
84% increase in the mean but no increase in variability around the mean of the frequency distribution in the 
Deadman River and Joe Ross Creek, respectively. Consequently, the 7-year, 20-year, 50-year, and 100-year flood 
events became approximately two, four, six, and ten times more frequent in both watersheds. An increase in the 
mean is posited to occur from an increase in moisture availability following harvest from suppressed snow 
interception and increased net radiation reaching the snowpack. Variability was not increased because snowmelt 
synchronization was inhibited by the buffering capacity of abundant lakes, evenly distributed aspects, and 
widespread spatial distribution of cutblocks in the watersheds, preventing any potential for harvesting to in
crease the efficiency of runoff delivery to the outlet. Consistent with similar recent studies, the effect of logging 
on floods is controlled not only by the harvest rate but most importantly the physiographic characteristics of the 
watershed and the spatial distribution of the cutblocks. Imposed by the probabilistic framework to understanding 
and predicting the relation between extremes and their environmental controls, commonly used in the general 
sciences but not forest hydrology, it is the inherent nature of snowmelt-driven flood regimes which cause even 
modest increases in magnitude, especially in the upper tail of the distribution, to translate into surprisingly large 
changes in frequency. Contrary to conventional wisdom, harvesting influenced small, medium, and very large 
flood events, and the sensitivity to harvest increased with increasing flood event size and watershed area.   

1. Introduction 

Understanding the relation between forest disturbances and flood 
response is critical in ensuring effective forest management to minimize 
the hydrologic effect associated with forest harvesting practices and 
protect downstream water users. Floods are naturally occurring phe
nomena, but the magnitude and frequency at which they occur can be 
exacerbated by land use (e.g., Blum et al., 2020; Hecht & Vogel, 2020; 
Oudin et al., 2018; Reynard et al., 2001), and/or climate change (e.g., 
Alfieri et al., 2016; Berghuijs et al., 2017; Milly et al., 2002). Increased 
flood risk can have severe consequences to downstream lives (e.g., 

Ashley & Ashley, 2008; Laurance, 2007) and infrastructure (e.g., 
Downton et al., 2005; François et al., 2019; Kumar et al., 2021), and can 
negatively impact fluvial ecosystems (e.g., Talbot et al., 2018), degrade 
water quality (e.g., Alexander et al., 2007), and cause sedimentation 
issues downstream (e.g., Picchio et al., 2021). In light of emerging 
questions pertaining to the human influence on the recent devastating 
November 12–15, 2021, flood event in southwestern BC (Weber, 2021), 
developing our understanding of the relation between changes in land 
cover and flooding is now more important than ever. 

Currently, there is a general lack of agreement among forest hy
drologists on forest covers’ ability to mitigate and protect against floods, 
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particularly for large flood events (with return periods > 10 years, e.g., 
20, 50, 100 years and beyond) (e.g., Alila et al., 2009, 2010, Alila and 
Green, 2014a,b; Bathurst, 2014; Birkinshaw, 2014; Bradshaw et al., 
2007, 2009; Valentine et al., 1978; van Dijk et al., 2009). In particular, 
this has spurred considerable confusion and debate among policymakers 
on whether advocating for an increase in forest cover is an effective 
natural flood mitigation strategy (e.g., Bradshaw et al., 2009; Carrick 
et al., 2019). 

Disagreement among forest hydrologists on the forest and flood 
relation is in large part due to differences in how the effect of forest 
harvesting is measured. Over the last 100 years, most forest hydrology 
research has adopted a metric, typically applied in paired watershed 
experiments, where the effect of harvesting on floods has been defined 
as the difference in magnitude of a flood event when the control and 
treatment watersheds are subject to the same storm input (for rain 
dominated regimes), or the same snowmelt season (for snowmelt- 
dominated regimes), referred to as the chronological pairing (CP) 
framework. However, Alila et al. (2009) maintained that the effects of 
harvesting should be measured by the difference in magnitude when 
control and treatment watershed floods are paired by equal frequency of 
occurrence, known as the frequency pairing (FP) framework. The 
different measures are a result of different research questions posed by 
the investigators, which in turn affects the experimental design meant to 
control for all possible confounders and isolate the effects of forests on 
floods. 

1.1. CP vs. FP-based paired watershed studies 

CP-based studies are dominantly based on the research question: 
how does the flood response differ in a forested versus unforested 
watershed, given the same storm input (rain-dominated regimes) or the 
same snowmelt season (snow-dominated regimes)? FP-based studies, on 
the other hand, seek to answer the question: how did harvesting affect 
the magnitude (frequency) of a flood event of the same frequency 
(magnitude)? 

CP studies (e.g., Bathurst et al., 2011, 2020; Dymond et al., 2021) 
conventionally evaluate the effect of forests on floods by applying the 
before-after, control-impact (BACI) experimental design. This involves 
monitoring two, often neighboring watersheds of similar physiography, 
for several years, known as the calibration period. An empirical rela
tionship between streamflow in both watersheds is developed in the 
form of a simple linear regression equation, known as the calibration 
equation. Next, a treatment (e.g., forest harvesting) is applied to one 
catchment and the calibration equation is used to predict streamflow in 
the treatment watershed had the treatment not occurred, based on 
streamflow from the control watershed. The difference between 
observed and predicted streamflow is then quantified and interpreted as 
the treatment effect. 

Adopted from the wider hydrology and climatology literature (e.g., 
Howe et al., 1966; Katz, 1993; Katz & Brown, 1992; Salas et al., 2012; 
Wigley, 1985, 2009), FP-based studies evaluate the treatment effect by 
comparison of control and treatment flood frequency distributions. In a 
paired watershed context, FP studies (e.g., Alila et al., 2009; Green & 
Alila, 2012; Kuraś et al., 2012; Schnorbus & Alila, 2013; Yu & Alila, 
2019) evaluate the effect of forest harvesting on floods by comparing 
differences in pre- and post-harvest flood frequency distributions. 

Both CP and FP frameworks alike have been applied in modelling 
studies where long-term simulated flood data are generated for a given 
watershed and compared under forested and unforested conditions, 
provided the same climate inputs. For example, Birkinshaw et al. (2011) 
applied the SHETRAN model and analyzed its outputs in the CP 
framework and Schnorbus & Alila, 2013 evaluated outputs from the 
DHSVM model in the FP framework. In these cases, the fundamental 
difference between the CP and FP frameworks is not how the data are 
generated, but rather how the data are analyzed. In the CP-framework, 
the pre- and post-harvest simulated peak flows are compared one event 

at a time by linear regression, whereas the FP framework evaluates the 
effect of harvesting as the difference in the pre- and post-harvest sim
lutated peak flow frequency distributions.Those that have adopted the 
CP approach have generally concluded that forests can mitigate small 
and medium-sized floods in small watersheds, but have no significant 
influence on the larger events and at larger watershed scales (Calder, 
2007; Fahey & Payne, 2017). Some studies have even claimed a 
threshold beyond which harvesting is thought to no longer affect floods 
as low as the 2-year (Macdonald & Stednick, 2003; Thomas & Megahan, 
1998), 5-year (Beschta et al., 2000), or 10-year (Bathurst et al., 2011; 
Birkinshaw et al., 2011; Calder, 2007) flood event. Contrarily, outcomes 
from the emerging FP-based research suggests that forest cover change 
can affect the magnitude and frequency of large flood events (>10-year 
return period) (e.g., Alila et al., 2009; Duncan, 1995; Green & Alila, 
2012; Kuraś et al., 2012; Reynard et al., 2001; Schnorbus & Alila, 2013). 
Moreover, based on measured data across a wide range of sample sizes 
from empirical studies (e.g., Green & Alila, 2012) and simulated flow 
records from modelling studies (e.g., Birkinshaw et al., 2011, Figure 8, p. 
1292; Schnorbus & Alila, 2013), there is mounting evidence indicating 
that these effects may persist unchecked with increasing event size, 
although more work is required to validate this prospect. 

The process understanding used by advocates of the CP approach to 
support the contention that larger events are not affected is primarily 
based on the precept that the forest covers’ ability to alleviate moisture 
via evaporation and interception becomes overwhelmed by the volume 
of moisture input from a large storm or snowmelt event. Once this ca
pacity is overwhelmed, the amount of water conveyed as runoff would 
be the same under forested or unforested conditions. Similar reasoning 
has been restated throughout the forest hydrology literature (e.g., 
Bathurst et al., 2020, p. 2; DeWalle, 2003, p. 1255), grey literature (e.g., 
Macdonald & Stednick, 2003, p. 13) and in forest hydrology textbooks 
(e.g., Cheng, 2012; p. 249). However, stemming from the CP-based 
research question posed earlier, this reductionist (one event at a time) 
and deterministic (not invoking the dimension of frequency) line of 
reasoning leads to an uncontrolled experiment. Therefore, causal 
inference cannot be established, leading to erroneous conclusions on the 
relation between forests and floods. 

The causes of floods are multiple and chancy. Several hydro- 
meteorological factors control flood generation in snow-dominated 
hydroclimate regimes. These causal factors include the amount of 
snow on the ground, energy available to generate snowmelt, rain falling 
on melting snow, and antecedent soil moisture conditions (AMC). In 
interior BC, large flood events often coincide with years with excep
tional snowpack; however, this is not always the case (Curry & Zwiers, 
2018). There are often many causal factors that contribute simulta
neously to generating a single flood response (Blum et al., 2020). These 
factors can work either synergistically to increase the response (e.g., an 
extreme flood generated by an above-average snow year and rapid 
spring warming), or antagonistically to dampen the response (e.g., a 
small flood generated by a normal snow year with gradual spring 
warming). Conversely, a flood event of the same magnitude could be 
generated by multiple combinations of these different randomly occur
ring hydro-meteorological factors. 

The probability distribution of floods is conditional on the proba
bility distribution of each hydro-meteorological factor, which collec
tively, determines the flood regime. In essence, the random 
combinations and multitude of contributing factors in aggregate, create 
the stochasticity of floods. This underlying principle necessitates that, to 
establish a controlled experiment, and hence, the causal inference of 
forest harvestings’ effect on floods, requires that the evaluation be 
conducted stochastically. Moreover, to causally infer that a change to 
the flood frequency distribution occurred from a single cause (e.g., forest 
harvesting), requires an experimental design that fully isolates the 
treatment effect (Alila et al., 2009) and controls for any confounding 
variables (Blum et al., 2020). By comparing differences between har
vested and unharvested flood frequency distributions (or similarly, flood 
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frequency curves), the effect of harvesting can be evaluated for floods of 
the same magnitude, which were likely generated by different flood 
drivers and/or processes. This is due to the classification of flood events 
into classes of equal magnitude, regardless of the causal factors that 
generate floods within that class. No different than the classification of 
extreme weather events in risk-based event attribution studies (e.g., 
Stott et al., 2004; van Oldenborgh et al., 2021), each event class rep
resents a magnitude, which occurs at a certain frequency. In aggregate, 
these classes constitute the hierarchical ranking of the flood frequency 
distribution. By evaluating how a flood magnitude class has changed in 
frequency, or conversely, how a frequency class has changed in 
magnitude, enables all contributing factors to be captured within that 
change, isolating harvesting as the sole causal factor. 

1.2. Nonstationarity and attribution 

There has been considerable advancement in the ability to under
stand historical and predict future flood events in the last several de
cades. Conventionally, flood frequency analysis (FFA) relied on the 
stationarity assumption, where the parameters of the frequency distri
bution of floods, were assumed to remain constant over time (Salas 
et al., 2018). However, anthropogenic climate and land use change have 
rendered hydrologic conditions in the past to be unrepresentative of 
conditions in the future (e.g., Berghuijs et al., 2017; Blum et al., 2020; 
Kumar et al., 2021). Therefore, the stationarity assumption was deemed 
to be no longer valid (Milly et al., 2008), and the development of 
nonstationary methods was required. Nonstationary FFA allows the 
frequency distribution to vary over time via changes to its parameters. 

Allowing the distribution parameters to vary with time alone (e.g., 
Katz, 2013) is a useful tool for reproducing the behaviour of a historical 
time-varying flood time series. However, it provides no indication of the 
underlying drivers of nonstationarity (Chen et al., 2021a). Incorporating 
physically-based climate covariates into the nonstationary flood fre
quency distribution models (e.g., Bertola et al., 2021; Chen et al., 2021a; 
Cheng et al., 2014; Du et al., 2015; El Adlouni et al., 2007; Faulkner 
et al., 2020; Gilleland & Katz, 2016; Prosdocimi et al., 2015; Shrestha 
et al., 2017; Su & Chen, 2019; Villarini & Serinaldi, 2012; Villarini & 
Strong, 2014; Yan et al., 2019; Yu & Alila, 2019) can explain the driver 
(s) of nonstationarity and improve model fit (Chen et al., 2021a). 
Additionally, time-varying land-use metrics, such as those representing 
changes in agricultural area (Slater & Villarini, 2017, 2018), urbaniza
tion (Blum et al., 2020; Prosdocimi et al., 2015; Singh & Chinnasamy, 
2021), forest cover (McEachran et al., 2021; Yu & Alila, 2019), and even 
population density (Slater & Villarini, 2017, 2018), have been incor
porated as covariates to detect whether changes in land use are acting as 
nonstationary drivers. However, nonstationary analysis is only recom
mended when there is physical justification for nonstationarity to be 
occurring (Montanari & Koutsoyiannis, 2014; Serinaldi et al., 2018). 
Otherwise, a nonstationary approach can unduly increase uncertainty, 
particularly for short record lengths. Under such conditions a simpler 
stationary model is favoured (Serinaldi & Kilsby, 2015). 

Nonstationary analyses have considerably advanced our ability to 
detect trends; however, less attention has been devoted to successfully 
attributing the underlying causal factors of change (Chen et al., 2021a; 
Merz et al., 2012). Emerging in parallel with the development of 
nonstationary analyses, attribution science has been an active area of 
research over the last 15 years (e.g., Allen & Ingram, 2002; Christidis 
et al., 2020; Hall & Perdigao, 2021; Otto et al., 2016; Philip et al., 2020; 
Shepherd, 2016; Stott et al., 2016; van Oldenborgh et al., 2021; Zhai 
et al., 2018). Largely motivated by furthering an understanding of the 
influence of anthropogenic climate change on weather and water ex
tremes, attribution studies can be generally classed into two categories: 
single-event attribution and general causation. Single event attribution 
studies seek to determine how anthropogenic activities have increased 
the risk of a single event. For example, investigating the human 
contribution to the 2003 European heatwave (e.g., Stott et al., 2004). 

General causation, on the other hand, seeks to address how an inter
vention, such as climate or land-use change, has influenced the entire 
distribution of weather and water extremes. For example, a recent in
crease in high summer temperatures recorded in the United Kingdom 
prompted Christidis et al. (2020) to determine whether climate change 
has increased the likelihood of such events from occurring. They found 
that the likelihood of summers experiencing a temperature exceeding 
40 ◦C, which presently occurred at a 100- to 300-year recurrence in
terval, would increase in frequency to occur every 3.5 years by 2100. In 
the context of FFA, general causation involves evaluating how the entire 
flood regime has been influenced by a single causal factor (e.g., climate 
change or land use), which becomes complicated as these causal factors 
can occur simultaneously (Aghakouchak et al., 2020). 

1.3. Nonstationary stochastic paired watershed studies 

Nonstationary FFA and general causation have been combined to 
create a nonstationary stochastic paired watershed study. The approach 
involves selecting a disturbed (e.g., urbanized, harvested, etc.) treat
ment watershed, and an undisturbed control watershed. The role of the 
control is to rule out the possibility of a changing frequency distribution 
in the treatment from anything other than the disturbance. This is 
achieved by accounting for the natural background climate variability in 
both treatment and control watersheds by allowing the distribution 
parameters to vary as a function of local climate factors in the form of 
covariates. Next, a time-varying disturbance metric is incorporated as a 
covariate into the nonstationary treatment model. Any additional vari
ability explained by the disturbance metric, which hasn’t manifested in 
the control watershed, can be attributed to the disturbance. To the au
thor’s knowledge, this approach has only been applied by Prosdocimi 
et al. (2015), who detected and attributed the effect of urbanization on 
floods, and by Yu & Alila (2019) who detected, attributed, and quanti
fied the effect of forest harvesting on floods. 

Unlike in conventional stationary paired watershed studies, the 
control watershed is no longer required to predict flows in the treatment 
had the disturbance not occurred. The new role of the control enables 
the size and proximity constraints imposed by the conventional sta
tionary approach to be relaxed. In other words, the control and treat
ment basins are no longer required to be small and neighboring. For 
example, the basin pairs used by Prosdocimi et al. (2015) are roughly 30 
km apart. Under the nonstationary FP framework, the control and 
treatment basins must share a similar hydroclimate regime and receive 
the same synoptic-scale climate inputs but are not required to receive 
the same meteorological inputs. The assumption of a hydro- 
climatologically homogenous region is similar to the one often applied 
in studies investigating the influence of climate on regional trends in, for 
example, streamflow (e.g., Cunderlik & Burn, 2002; Cunderlik & 
Ouarda, 2009; Singh & Basu, 2022; Thorne & Woo, 2011; Zhang et al., 
2001), meteorology (e.g., Fleming & Whitfield, 2010) or winter snow
pack (e.g., Moore & McKendry, 1996; Mote, 2003; Najafi et al., 2017). 
Thorne & Woo (2011, p. 3077) even stated “Such regional climatic and 
hydrological responses to atmospheric forcing are manifested over large 
scales.” in their investigation of streamflow response to climate vari
ability within the Fraser River Basin. Moreover, the control and treat
ment basin do not need to share similar physiography. Both the local 
climate and physiography of each basin are inherently expressed as a 
signal in their respective flood frequency distributions. Any change in 
climate over the study period is manifested by the climate covariates in 
the nonstationary models. 

Much like in stochastic stationary paired watershed studies (e.g., 
Green & Alila, 2012), an understanding of the physics can be evaluated 
based on harvesting-induced changes to the flood frequency distribu
tion, known as stochastic physics. Stochastic physics involves moving 
beyond a “statistics only approach” for the purposes of flood prediction, 
towards using statistics as a tool to better understand the physical pro
cesses of flood generation (Dawdy & Gupta, 1997, p.274). Pioneered by 
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Eagleson (1972), Klemeš (1978), and Yevjevich (1974), evaluating the 
environmental controls on floods by way of the flood frequency distri
bution (i.e., stochastic physics) is not a novel concept outside of forest 
hydrology (e.g., Ayalew & Krajewski, 2017; Blöschl & Sivapalan, 1997). 
As mentioned previously, the probability distribution of floods is con
ditional on the probability distribution of each hydro-meteorological 
factor. Any changes invoked to the distribution of one, or all, of these 
contributing factors, (e.g., as a result of forest harvesting), will subse
quently cause the flood distribution to change. Conversely, evaluating 
how the flood distribution has changed due to a disturbance, can then be 
used in conjunction with our current understanding of stand and 
watershed level physics to infer the cause(s) of that change. 

Notwithstanding modelling studies, little research has been con
ducted to investigate the impact of harvesting on floods in larger wa
tersheds (Slater et al., 2021). Applying outcomes from smaller basins to 
larger more practical scales is not always valid (e.g., Bertola et al., 2021; 
Blöschl & Sivapalan, 1995; Lemma et al., 2018). The greatest opportu
nity unveiled by this novel nonstationary paired watershed framework, 
is that it allows opportunistic studies to be conducted in a controlled 
setting outside of conventional experimental watersheds. This opens the 
doors to both the size and number of watersheds that can now be 
investigated under a framework aiming at causal inference. 

1.4. Research objectives 

In the spirit of an approach advocated by Dooge (1986, p. 50), this 
study uses a top-down inductive approach by developing physically- 
based, realistic catchment-scale models seeking to uncover catchment- 
scale hydrologic laws. 

The effect of forest harvesting on floods in the Deadman River 
watershed and nested Joe Ross Creek sub-basin is evaluated using a 
stochastic nonstationary paired-watershed approach. The purpose of 
this investigation is to test the following hypotheses:  

1. Forest disturbances can affect small (<10-year) and large (>10-year) 
return periods at the larger (99 and 878 km2) practical watershed 
scales, and  

2. The drivers of the flood response to disturbances can be inferred by 
stochastic physics, after accounting for the natural background 
climate variability. 

Additionally, this study is motivated by two primary research ob
jectives: (i) further the application of a newly developed method for 
detecting, attributing, and quantifying the effect of forest disturbances 
on the flood regime and (ii) advance the probabilistic physical under
standing of the environmental controls that drive the relation between 
forest disturbances and floods. 

2. Study site and watershed description 

2.1. Study site 

In light of this new framework, forest harvesting effects on floods in 
the Deadman River watershed, and the nested Joe Ross Creek sub-basin 
(Fig. 1) can now be investigated for the first time in a controlled 
experimental setting. The unharvested Big Creek watershed will act as a 
control for both treatment basins and lies 124 km west of the Deadman 
River (Fig. 1). Typical of the BC Interior Plateau, all three watersheds 
have a snow-dominated flow regime, with floods generated by the 
spring freshet in May, June, or occasionally early July. The Deadman 
River watershed is located 50 km west of the city of Kamloops on the 
Thompson Plateau (Province of British Columbia, 2015) and is a tribu
tary to the Thompson River (Fig. 1). It has a drainage area of 878 km2 

upstream of the Water Survey of Canada (WSC) hydrometric station (ID 
08LF027). Elevation ranges from 530 m to 1,776 m and the topography 
is subdued, with 90% of the watershed area above 1,020 m (Fig. 2). 
Slope and aspects throughout the Deadman River watershed are 
generally evenly distributed (Fig. 2d). Average annual precipitation is 
545 mm (26% as snow) and ranges from 299 mm (16 % as snow) to 569 

Fig. 1. The Deadman River treatment watershed (purple) and Big Creek control watershed (green) with their stream network and respective Water Survey of Canada 
gauging station locations. The right plot shows the study basin locations in relation to the snow pillow and climate stations. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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mm (45 % as snow), from the lowest to highest elevations, respectively 
(Wang et al., 2016). It is located within the Interior Douglas-Fir and Sub 
Boreal Pine-Spruce biogeoclimatic (BEC) zones at lower and mid- 
elevations, respectively, and the Montane-Spruce zone at higher eleva
tions. Surficial deposits are dominantly post-glacial quaternary till with 
some glacial lacustrine and alluvial deposits. Additional watershed 
characteristics are summarized in Table 1. 

The watershed lies within the traditional territory of the Skeetchestn 
Indian Band and has high fisheries values; along its main channel are a 
series of lakes that act as settling ponds, preventing fine sediment from 
being delivered to lower reaches used by anadromous fish. Two of the 
lakes are regulated reservoirs designed to provide downstream flow 
needs for fisheries and water users during the summer. The storage li
cense associated with these regulated systems (Storage license C047924) 
allows storage of 2,500 m3/month at a maximum rate of 100 m3/day 
between March 15 and October 31. The daily volume equates to only 0.5 
% of the total volume generated by average floods over the study period 
per day and is therefore expected to have a negligible impact on flood 
magnitude. 

Between 1960 and 2014, a total of 342.6 km2 or 39 % of the Dead
man River watershed area has been clear-cut harvested, largely in 
response to the widespread mountain pine beetle (MPB) outbreak in 
2003 (Fig. 2c). With exception of the valley-bottom and northeast 
portion of the watershed, which is protected by the Bonaparte Provincial 
Park, harvesting is generally extensive across the entire watershed area. 

Joe Ross Creek is nested within the northern portion of the Deadman 
River watershed and has an area of 99 km2 above the WSC flow station 
(ID 08LF094) located at the mouth (Fig. 1). Elevation in Joe Ross Creek 
ranges from 1,054 m to 1,559 m and like the Deadman River basin has 
subdued topography (Fig. 2a, b), although is not characterized by a low- 
lying valley-bottom (Fig. 2e). The main channel flows from northeast to 

southwest and is largely dominated by southwest and southern aspects 
(Fig. 2d). Relative to the Deadman River watershed, the Joe Ross Creek 
sub-basin receives greater amounts of precipitation annually (508 mm) 
and a larger proportion in the form of snow (33 %), due to its higher 
median elevation. Harvesting and MPB impacts in the basin follow a 
similar temporal trend as the Deadman River, although harvesting levels 
are higher in Joe Ross Creek (51 %) relative to basin area. 

The Big Creek watershed lies 124 km west of the Deadman River 
basin and is a tributary of the Chilcotin River, located on the Chilcotin 
Plateau, a western subdivision of the Interior Plateau along the eastern 
slopes of the Coast Mountains. The watershed has an area of 1,010 km2 

upstream of the WSC stream gauge (ID 08 MB006) with elevation 
ranging from 1,312 m to 2,989 m. Steep coastal mountains in the 
headwaters account for 10 % of the watershed area between 2,265 m 
and 2,989 m, whereas the lower 90 % of the basin area lies between 
1,312 m to 2,265 m and is relatively subdued. The basin is characterized 
by dominantly north, northeast, and northwest facing slopes and is 
located within the Sub Boreal Pine-Spruce and Montane Spruce BEC 
zones at lower elevations and within the Engelmann Spruce-Subalpine 
Fir and Boreal Altai Fescue Alpine zones at higher elevations. Surficial 
materials are mainly composed of glacial moraine (Fulton, 1975; Val
entine et al., 1986). 

A significant portion of the watershed is protected by the Big Creek 
Provincial Park (Fig. 1). Consequently, roughly 5 % of the total basin 
area has been harvested, most of which is concentrated in lower eleva
tion zones and is therefore not expected to influence floods (Schnorbus 
& Alila, 2004; Whitaker et al., 2002). The lower one-third of the basin 
was subject to MPB infestation from 2007 − 2009. However, the recent 
timing and location of the impact (within 5–7 years of the end of the 
study period and at low elevations), suggests that the MPB effect on the 
flow regime is expected to be negligible (Biederman et al., 2015; 

Fig. 2. Physiography of the Deadman River watershed and Joe Ross Creek sub-basin: (a and b) basin hypsometry illustrating the percentage of the basin area that lies 
above a certain elevation, for example, 60% of the basin area lies above the elevation associated with the H60; (c) harvested area by decade in grey (darker color 
indicates more recent harvesting) and total area impacted by the mountain pine beetle in yellow; (d) aspect distribution with percentages indicating the portion of the 
watershed occupied by each aspect; (e) slope map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Schnorbus, 2011; Vore et al., 2020). Additionally, Big Creek is currently 
recognized as a part of the reference hydrometric basin network (as of 
Feb. 26, 2021), which are a set of gauged stations deemed suitable to 
climate change studies based on long flow records and minimal human 
impact (Environment and Climate Change Canada, 2021; Whitfield 
et al., 2012). Furthermore, a review of satellite imagery following the 
MPB outbreak revealed that much of the MPB impacted area remains 
intact, therefore maintaining hydrologic function in the form of snow 
interception. 

2.2. Data 

2.2.1. Flood data 
Floods in this study are defined as the annual maximum daily flow 

value (m3/s); however, only floods generated from snowmelt or rain-on- 
snow were considered for analysis. Streamflow data were acquired from 
the Environment and Climate Change Canada Historical Hydrometric 
Data website (https://wateroffice.ec.gc.ca/mainmenu/historical_data 
_index_e.html). The flood records span from 1975 to 2014 (40 years) 
for the Deadman River and Big Creek watersheds, and from 1984 to 
2014 (30 years) for the Joe Ross Creek sub-basin. In Big Creek, the 
largest flow of 1984 occurred from heavy rains during the fall, therefore 
the largest daily flow value during the freshet was used for that year. 
Floods from 1991, 1999, 2005, and 2006 in Big Creek were found to be 
generated by large rain-on-snow (ROS) events and accounted for the 
largest four flood observations, which deviate from the rest of the 
empirical flood distribution. To test the nonstationary models to sensi
tivity from the ROS events, a reduced record was created by omitting 
these four flows; however, the full record was used for analysis. The 
largest flood of record in the Deadman River, generated by rain in the 
days leading to the melt and the largest 3-day warming rate on record 
was found to be an outlier based on the Grubbs test for one outlier in a 
data sample (Grubbs, 1950) with a p-value < 0.001. As such, a reduced 
record was also created for the Deadman River. No outliers were 
detected in the Joe Ross Creek flood time series; however, two years of 
flood data were missing resulting in only a 28-year flood record. A 
similar process of analyzing the nonstationary models using a full and 
modified record was used by Prosdocimi et al., (2015) and Yu & Alila, 
(2019). To compare the influence of ROS events on the nonstationary 
models, both full and reduced records were used for model 

development; however, the effect of harvesting on floods was quantified 
using the full record from Big Creek and the reduced record from the 
Deadman River (with the outlier removed). 

2.2.2. Climate data 
As mentioned previously, the magnitude of floods in snow- 

dominated hydroclimate regimes is controlled by several hydro- 
meteorological factors. These include the amount of snow on the 
ground, energy available to generate snowmelt, rain falling on melting 
snow, and antecedent soil moisture conditions (AMC). However, the role 
of AMC is not expected to vary greatly between freshet years, as soils are 
likely already saturated when floods occur and are not expected to be a 
primary predictor of flood response (Curry & Zwiers, 2018; Schnorbus & 
Alila, 2013). AMC was therefore not included as a covariate in the 
analysis. Each of the remaining three factors can be represented in the 
form of climate covariates derived from measured temperature, pre
cipitation, and snow water equivalent (SWE) values, from nearby 
Environment Canada (EC) weather and BC Government snow pillow 
stations (Fig. 1). 

No single weather station within reasonable proximity of the basins 
had a complete record spanning the study period, so data from multiple 
stations in the study area were collated using linear regression to obtain 
a comprehensive record. For Big Creek, weather data were collated from 
the North Tyaughton (ID 1C40P) and Big Creek (ID 1080870) stations 
(R2 of 0.81), and Wineglass Ranch (ID 109QR57) and Big Creek stations 
(R2 of 0.82). SWE data from the North Tyaughton Creek (ID 1C40) was 
used from 1995 to 2014 and the remaining values were collated using 
linear regression between the North Tyaughton and Bralorne (ID 1C14) 
provincial snow pillow stations (R2 of 0.56). For the Deadman River and 
Joe Ross Creek, weather data were acquired from the Kamloops Airport 
(ID 1163780) and Red Lake (ID 1166658) EC stations; however, missing 
data in 1997 and 2013 was extended by linear regression between the 
Kamloops airport and Red Lake (ID 1166658) (R2 of 0.95). SWE data 
were acquired from the Deadman River (ID 1C32) snow pillow station 
from 1984 to 2014 and by linear regression between the Knouff Lake (ID 
1E05) and Deadman River snow pillow stations from 1975 to 1983 (R2 

of 0.33). 
Daily maximum and minimum temperatures were averaged to obtain 

mean daily temperatures (◦C), which were then averaged to determine 
the 3-day, 5-day and 7-day mean temperature preceding the time of the 

Table 1 
Watershed characteristics and climate/flow data used for the three study basins: Big Creek (control), Deadman River (treatment), and Joe Ross Creek (treatment).    

Big Creek Deadman River Joe Ross Creek 

Physiography Basin area (km2) 1,011 878 99 
Elevation range (m) 1,312 – 2,980 539 – 1,776 1,054 – 1,559 
Relief (m) 1,668 1,237 505 
Relief ratio 0.034 0.022 0.029 
Stream length (km) 995.4 673.3 86.9 
Drainage density (km/km2) 0.98 0.77 0.88 
Lake area (km2) 7.4 24.1 1.3 
Dominant aspects N/NE/NW None SW/S/W 
Mean annual precipitation (mm) 958 454 508 
Precipitation as snow (mm) 610 147 169 
Mean annual temperature (◦C) 0.40 3.10 3.00 

Land cover BEC zone# SBPS/MS/ESSF/BAFA IDF/SBPS/MS IDF/SBPS/MS 
MPB impacted area (km2) 332.81 534.27 67.49 
MPB impacted area (%) 32.92 60.84 68.23 
Harvested area (km2) 49.20 342.55 50.00 
Harvested area (%) 4.95 39.01 50.54 
Portion of MPB area salvage logged (%)  33.17 41.58 
Peak ECA (%)  29.40 38.52 

Climate/ 
flow data 

Stream gauge ID 08 MB006 08LF027 08LF094 
Snow pillow station 1C14, 1C40 1C32, 1E05 1C32, 1E05 
Weather station ID 1080870, 1C40P*, 109QR57 1163790, 1166658 1163790, 1166658 
Years of record 40 40 28  

# SBPS = Sub-boreal Pine–Spruce; MS = Montane Spruce; ESSF = Engelmann Spruce–Subalpine Fir; BAFA = Boreal Alti Fescue Alpine; IDF = Interior Douglas-fir. 
* Climate station from the BC Hydro network. 
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peak of the freshet hydrograph. Warming rates (WR) (◦C/day) were 
estimated from mean daily temperatures by calculating the rate at which 
temperatures increased/decreased during the 3, 7, 15, 30, and 45 days 
leading up to the time of the flood peak. Daily precipitation (mm) was 
summed to obtain the total 3-day, 5-day, and 7-day precipitation values. 
Peak SWE from each snow season preceding the freshet was acquired to 
represent the amount of snow on the ground in each winter season. 
Long-term (1981–2010) climate normals, summarized in Table 1, were 
downscaled by the ClimateBC model developed by Wang et al., (2016). 

2.2.3. Forest cover and disturbance data 
All forest cover and disturbance data used in this study were sourced 

from the BC data catalogue (https://catalogue.data.gov.bc.ca/dataset) 
managed by the BC Ministry of Forests Lands and Natural Resource 
Operations and Rural Development. The Vegetation Resources In
ventory (VRI) 2020 dataset provided forest cover data, including BEC 
zones, site index, height, age, and species composition. The VRI dataset 
also provided much of the harvesting data; however, it was incomplete 
and therefore supplemented by the “Consolidated Cutblocks” and “Re
sults Openings” layers. MPB data were acquired from the Pest Infestation 
Polygons. 

At the watershed scale, harvesting is both spatially and temporally 
cumulative, whereby the area harvested and time of harvest for each 
cutblock vary throughout the watershed. To quantify the cumulative 
impact of harvesting, a metric called Equivalent Clearcut Area (ECA) is 
introduced to represent the area of each cutblock hydrologically func
tioning as clearcut (Winkler & Boon, 2017). ECA has been widely used in 
the forest hydrology literature as a metric to relate forest disturbance 
impacts to the flow regime (e.g., King, 1989; MacDonald, 2000; Price 
et al., 2009; Valdal & Quinn, 2011; Varhola et al., 2010a; Winkler et al., 
2017) and is calculated as: 

ECA = A • (1 − HR) (1) 

where A is the cutblock area and HR is hydrologic recovery ranging 
from 0 to 1. An HR value of 1 indicates that the cutblock is fully 
recovered. The sum of ECAs for each cutblock divided by the total 
watershed area can then be expressed as a percentage representing the 
portion of the watershed hydrologically functioning as a cutblock at a 
given point in time. ECAs for each year are then assembled in a time 
series, which represents the temporal and spatially cumulative impacts 
of forest harvesting at the watershed scale. ECA can then be readily 
incorporated as a covariate into the nonstationary modelling procedure 
(Yu & Alila, 2019). Projected tree heights used in the ECA calculation 
were obtained from the VRI dataset; however, missing tree height values 
were calculated based on site index and stand age, using SiteTools 4.1, 
based on the Table Interpolation Program for Stands Yields (TIPSY, 
2021). All forest cover and disturbance data were analyzed using ArcGIS 
Pro v. 2.8.1. 

Harvest levels were relatively low in the treatment watersheds until 
2003 when salvage harvest operations were implemented in response to 
the MPB outbreak (Fig. 3). From 2003 to 2014, average ECAs in the 
Deadman River and Joe Ross Creek basins were 21% and 25%, respec
tively. ECAs reached 29% in the Deadman River watershed and 39% in 
the Joe Ross Creek sub-basin by the end of the study period. 

3. Methodology 

3.1. Conceptual overview 

The goal of this study is to use a stochastic nonstationary approach to 
detect, attribute and quantify the effect of forest harvesting on floods 
while furthering our understanding of flood drivers using stochastic 
physics. The attribution framework used in this study falls under the 
“empirical attribution approach” (Slater et al., 2021, p. 3916), where 
empirical data are fit to a theoretical frequency distribution to first 
evaluate whether the data are nonstationary, then determine physical 
drivers of change by introducing time-varying predictors as covariates 
into the nonstationary model. 

The detection and attribution of the effect of forest harvesting on 
floods first require that the natural background variability in the flood 
time series be accounted for, to isolate the effect of harvesting. This is 
achieved by the careful selection of climate covariates based on a sound 
apriori understanding of the physical drivers of floods in snowmelt- 
driven watersheds of Interior BC, as determined from past research (e. 
g., Curry & Zwiers, 2018; Thorne & Woo, 2011; Whitfield et al., 2010). 
Climate covariates used in this study include peak annual SWE; warming 
rate, temperature, and rain preceding the melt; and indices representing 
the PDO and SOI synoptic-scale teleconnections. Nonstationary models 
are then developed by allowing the distribution parameters to change 
over the study period as a function of these climate covariates. Model 
suitability is determined based on the outcomes of likelihood ratio tests 
between the stationary and nonstationary model, and Akaike Informa
tion Criterion (AIC) scores amongst the nonstationary models. 

Next, ECA is introduced as an additional covariate in the final model 
of the treatment watershed(s) to explain any unaccounted variability. 
Time is introduced in place of ECA in the control watershed to ensure 
that, after accounting for the natural climate variability, there is no 
remaining unexplained variability and there are no trends in the fre
quency distribution over the study period. This enables any trends 
detected in the treatment watershed to be solely attributed to harvest
ing. The final nonstationary model can then be used to evaluate how the 
magnitude of a certain return period is changing over the study period, 
by allowing the distribution parameters to change as a function of the 
covariates. Finally, the effect of harvesting can be quantified by using 
the long-term average values of the climate covariates, while only 
allowing the distribution parameters to change as a function of ECA. 
This enables the evaluation and quantification of changes in magnitude 
and frequency invoked at different levels of harvesting (ECA). 

It is an important reminder that, unlike in conventional paired 
watershed studies (Andréassian et al., 2012), the control watershed is no 
longer used to predict floods in the treatment watershed, had logging not 
occurred. The new role of the control is to rule out a changing frequency 
distribution from anything other than local (e.g., snow, warming rate, 
temperature & rain) and synoptic-scale (e.g., PDO & SOI) climate fac
tors. Ruling out any external variability via the nonstationary control 
model and accounting for the natural background variability in the 
nonstationary treatment model, allows the effect of harvesting to be 
isolated and the experiment to be controlled, thereby aiming at a causal 
inference framework. 

3.2. Statistics of extremes framework 

Snow-dominated environments typically have a single flood freshet 
generated by snowmelt in the spring, lending themselves to be evaluated 

Fig. 3. Harvesting extents throughout the study period (1975 – 2014) in the 
Deadman River and Joe Ross Creek treatment watersheds. The equivalent 
clearcut area (ECA) is shown by the dotted and dashed lines and the left y-axis. 
The percent of the basin area harvested each year is shown by the vertical bars 
and the right y-axis. 
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using the block maxima (BM) approach for modelling hydrologic ex
tremes. BM are typically assumed to originate from a heavy-tailed dis
tribution such as the GEV distribution, which has theoretical 
justification to be fit to annual maxima (Coles, 2001; Katz, 2013). 
Furthermore, a recent study intended to identify the best-suited distri
bution for floods in Canada by Zhang et al. (2020) found that the GEV 
distribution was the best suited among the distributions examined (GEV, 
generalized logistic, Pearson type III, and log-Pearson type III). 

3.3. GEV distribution 

The GEV family of distributions is composed of the Fréchet, Weibull, 
and Gumbel distributions (Coles, 2001), and is defined by three pa
rameters: the location, scale, and shape, whereby the location provides a 
measure of central tendency, the scale provides a measure of the devi
ation around the center of the distribution and the shape determines the 
overall shape of the distribution (Katz, 2013). Assuming the random 
variable Q, representing the BM floods, follow a GEV distribution, the 
probability density function (pdf) and cumulative density function (cdf) 
of the stationary GEV distribution, as defined by Hosking and Wallis 
(1997) are: 

fq(Q) = σ(− 1)e(− (1− ξ)t− e(− t) ), t =
{
− ξ− 1ln(1 − ξ(Q − μ/σ) when ξ ∕= 0,
(Q − μ/σ) when ξ = 0

(1)  

Fq(Q) = exp{− e− t} (2) 

where μ, σ, and ξ are the location, scale, and shape parameters, 
respectively. The value of the GEV shape parameter obtained from the 
empirical data (Q) determines which respective distribution is used in 
the modelling procedure and hence, the tail behaviour of the distribu
tion (Shrestha et al., 2017). As − ∞ < Q ≤ μ+σ

ξ if ξ > 0 the distribution 
follows a Fréchet distribution; when − ∞ < Q ≤ ∞ if ξ = 0 the distri
bution has an unbounded thin tail and follows the Gumbel distribution; 
and when μ+σ

ξ < Q ≤ ∞ if ξ < 0 the distribution has a bounded upper 
tail and is said to follow the Weibull distribution (Coles, 2001; Katz, 
2013; Katz et al., 2002). The cdf of the GEV distribution, calculated in 
equation (2) is of particular interest as it can be used to determine the 
return levels of floods, where p is the probability associated with the 
quantile and 1/p is the return period. 

Under the conventional stationary approach, the data are assumed to 
be independent and identically distributed (Salas et al., 2018). However, 
in the case of nonstationary analyses, the data are assumed to be inde
pendent but not necessarily identically distributed. This is because the 
parameters describing the frequency distribution are modelled to 
change with time, or other time-varying covariates (e.g., Katz et al., 
2002; Salas et al., 2018). 

3.4. Parameter estimation 

The maximum likelihood (ML) approach to estimate the distribution 
parameters is widely applied in nonstationary flood frequency analysis 
(e.g., Prosdocimi et al., 2015; Salas et al., 2018; Strupczewski et al., 
2001) as it readily allows covariates to be incorporated into the 
nonstationary models (Gado & Nguyen, 2016). The location, scale, and 
shape parameters of the GEV distribution were therefore estimated from 
the empirical BM flood time series using ML (Coles, 2001). 

Denoted by L(μ, σ, ξ;Q), where Q = (Q1,⋯,Qm) is a vector of M block 
maxima, the likelihood function provides a measure of how likely the 
observed block maxima Q are of the unknown GEV parameters μ, σ, and 
ξ. The values of the parameters μ, σ, and ξ that maximize the likelihood 
function are known as the maximum likelihood estimates (MLEs). It is 
more convenient to work with the log-likelihood function (Katz, 2013), 
which can be maximized to obtain the MLEs for the parameters of the 
GEV distribution with ξ ∕= 0 by deriving equation (1) as: 

lnL(μ, σ, ξ;Q) = lnf(μ, σ, ξ;Q1)+⋯+ lnf(μ, σ, ξ;Qm) (3) 

with respect to μ, σ, and ξ. This equation can be simplified as: 

lnL(μ, σ, ξ;Q) =
∑M

i=1
lnf(μ, σ, ξ;Qi) (4) 

It is also more convenient to minimize the negative log-likelihood 
(nllh) function rather than maximize the log-likelihood function (Katz, 
2013). The nllh function lnL(μ, σ, ξ;Q) can be written as: 

lnL(μ, σ, ξ;Q) = − Mlnσ
∑M

i=1
{ti(1 − ξ) + e− ti } (5)  

ti = − ξ− 1ln(1 −
ξ(Qi − μ)

σ )

Equation (5) can be adapted for the nonstationary case where one or 
more of the model parameters are defined as a function changing line
arly with a covariate x. For example, if μ were modelled as a linear 
function of covariate ×, μ(x) = μ0 +μ1 • x then the nllh function would 
now be − lnL(μ(x), σ, ξ;Q) with the optimization problem minimizing 
the nllh to four parameters rather than three parameters in the sta
tionary case. Following Katz (2013), equation (5) can be modified for 
the location parameter as a function of a covariate × as: 

lnL(μ0, μ1, σ, ξ;Q, x) = − Mlnσ
∑M

i=1
{ti(1 − ξ) + e− ti } (6)  

ti = − ξ− 1ln(1 −
ξ(Qi − μ0 − μ1xi)

σ )

If both the location and scale parameters were each modelled as a 
function of a single covariate, then five parameters would have to be 
optimized, for example: μ0,μ1,σ0,σ1 and ξ. 

Unlike the location and scale parameters, the shape parameter re
mains unchanged throughout the nonstationary modelling due to 
computational uncertainties and instability when fitting the distribution 
(Cannon, 2010; Coles, 2001; Katz et al., 2002; Prosdocimi et al., 2015; 
Shrestha et al., 2017; Villarini et al., 2018). The shape parameter is 
rarely made a function of covariates as it is difficult to estimate with 
precision even in the stationary case (Salas et al., 2018). However, 
recent studies have shown that the shape parameter may change in 
response to forest harvesting (McEachran et al., 2021). Following 
similar studies (e.g., Katz, 2013; Li & Tan, 2015; Prosdocimi et al., 2015; 
Tan-Soo et al., 2016), and to reduce model complexity, the location and 
scale parameters are assumed to be linearly related to the covariates, 
although non-linear (i.e., quadratic) relations can also be modelled (e.g., 
El Adlouni et al., 2007). 

3.5. Model evaluation 

To develop an understanding of the physical drivers of floods in the 
control and treatment watersheds, it is necessary to determine which 
covariates, or combination of covariates, result in the best-suited model. 
Furthermore, as covariates are added throughout the modelling pro
cedure, it is necessary to determine whether the addition of a new co
variate improves the model performance (i.e., increases the amount of 
natural background variability in the flood time series explained by the 
model). Model suitability is determined by two approaches. The first is 
to perform a likelihood ratio test which allows for formal hypothesis 
testing between two models but requires that the models be nested 
(Coles, 2001). The second is to compare the AIC score between two 
models, which does not require that they be nested, but does not allow 
for formal hypothesis testing (Coles, 2001). A lower AIC score indicates 
a superior model. Both approaches rely on the nllh values calculated in 
equations (5) and (6). 

AIC scores are generated by penalizing the minimized nllh function 
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based on the number of parameters. This accounts for smaller nllh values 
inherently associated with a model with more parameters, regardless of 
the relevance of the covariate, which helps reduce the risk of overfitting. 
For smaller sample sizes (n < 40), it is recommended to use the small 
sample criterion AICc in place of AIC, which further penalizes models 
with a greater number of parameters (Anderson & Burnham, 2002; 
Burnham & Anderson, 2004). Additionally, as the number of covariates 
used in the modelling procedure increases, so does the possibility of 
reaching a lack of convergence, resulting in a non-optimum point under 
MLE (Restrepo & Bras, 1985), in which case the models are invalid 
(Anderson & Burnham, 2002). 

3.6. Model development 

Preliminary models were developed to determine, for the single 
climate-controlling factors (e.g., precipitation) one-at-a-time, which 
metric (e.g., 1-day, 3-day, 5-day, or 7-day total rainfall) was most suit
able to be included in the final nonstationary models. Preliminary 
models were also used to provide an early indication of which distri
bution parameter should vary as a function of each climate covariate. To 
address the issue of collinearity, covariates representing the same pro
cess (e.g., 1-day and 3-day total rainfall), which are likely correlated, 
were evaluated independently. Covariate suitability was determined 
based on nllh values between the model of interest and the stationary 
model. Based on these outcomes, additional models were developed by 
adding and combining covariates in each parameter and model perfor
mance was largely determined based on AICc scores, as most models 
were not nested. Quantile-Quantile (Q-Q) plots and kernel density 
functions of empirical vs. modelled results were also evaluated to 
determine the best-suited model (Slater et al., 2021). The covariates 
used in the final climate models indicate the dominant physical drivers 
of floods in each respective watershed. 

Model development was carried out using R (R Core Team, 2020) 
and the statistical package “extRemes” (Gilleland & Katz, 2016). Out
comes from the full and reduced records (created by omitting four ROS 
events in Big Creek and a single outlier in the Deadman) were both 
considered during model development to (i) test for model sensitivity to 
floods generated by ROS events detected in Big Creek, and (ii) test for 
sensitivity to a single outlier in the Deadman River. 

3.7. Attribution and quantification 

After accounting for natural climate variability, ECA was added to 
the final climate model in the treatment watershed(s) to determine the 
effect of forest harvesting on floods. If the addition of ECA was an 
improvement over the final climate model, then harvesting can be 
deemed a driver of change to the flood distribution over the study 
period. Model development serves the purpose of detecting harvesting 
(via proxy of the ECA metric) as a potential driver of nonstationarity in 
the flood time series. However, the attribution of harvesting is only 
viable after no trends have been detected in the flood frequency distri
bution of the control watershed. Time is added as a covariate to the final 
nonstationary models to ensure that there is no remaining unexplained 
variability in both the control and treatment watersheds. Once this is 
validated, the experiment is therefore aiming at a causal inference 
framework. Quantiles taken from the cdf of the final nonstationary 
control and treatment models can then be extracted to generate a time 
series of exceedance probabilities, which in turn can be translated into a 
time series of return levels. 

3.7.1. Attribution: Nonstationary return levels to validate the effect of 
harvesting 

Return level plots, which show how the magnitude associated with a 
fixed return period is changing over the study period, are produced for 
both control and treatment watersheds. The lack of a detectible trend in 
the control watershed serves to elucidate any trend detected in the 

treatment to harvesting. In other words, if trends are detected in the 
return levels of the treatment watershed, but not in the control, these 
trends can be attributed to harvesting. 

Several trend tests commonly, although often inappropriately (see 
Serinaldi et al., 2018), used to detect trends in observable flood records, 
are applied to the return level plots to confirm an increasing trend from 
harvesting. The Pettitt test was applied to detect any change-points in 
the time series, and the parametric Pearson’s r, non-parametric Mann- 
Kendall, and Spearman’s rho tests were applied to detect any monotonic 
trends. Helsel et al., (2020) and Villarini et al., (2009) describe the use 
and statistical basis of these detection tests, and Serinaldi et al., (2018) 
provides an in-depth discussion on the misuse of such trend tests, 
particularly on observed data without apriori knowledge of the under
lying stochastic processes. 

Applying these tests to the nonstationary return levels in this study is 
justified because any variability invoked by climate, which could 
confound results and cause unwarranted detection of nonstationarity, is 
accounted for by the climate covariates in the models. However, the 
outcomes of null hypothesis significance tests from these trend tests 
must still be evaluated cautiously (Serinaldi et al., 2018), given the short 
record length and variability within a given return period, particularly 
for higher return period floods. Shorter record lengths have been found 
to lead to a much higher occurrence of type II errors, where an upward 
trend exists but is not identified (e.g., Villarini et al., 2018). Further
more, a lack of statistical significance does not necessarily warrant a lack 
of practical (Kirk, 1996; Serinaldi et al., 2018; Villarini et al., 2018; Yue 
et al., 2002) or physical (Klemeš, 1978) significance, as highlighted in 
sections 4 & 5 of Alila et al. (2010). Therefore, the interpretation of the 
outcomes of these trend tests was evaluated based on an understanding 
that a lack of statistical significance did not necessarily warrant a lack of 
practical or physical significance, provided physically plausible 
reasoning. 

If no trends are detected in the flood frequency distribution of the 
control watershed but are detected in the treatment watershed, after 
accounting for natural climate variability and introducing ECA as a 
covariate into the nonstationary model, then harvesting can be attrib
uted as a nonstationary driver of floods. 

3.7.2. Quantification: Snapshot flood frequency curves at various levels of 
harvesting 

Quantifying the effect of harvesting on floods involves modelling the 
distribution parameters as a function of fixed climate values represent
ing the long-term average of each climate covariate used in the final 
nonstationary model while allowing the distribution parameters to 
change as a function of ECA. In other words, the distribution parameters 
are only changing as a function of the harvesting metric ECA, while the 
natural background signal is accounted for by the long-term average 
climate values (e.g., average annual peak SWE over the study period). 
This allows for a “snapshot in time” FFC to be generated to determine 
changes in magnitude and frequency invoked by changes in the mean 
and variability of the frequency distribution, at a specific level of har
vesting. The same level of ECA can be set between the Deadman River 
watershed and the Joe Ross Creek sub-basin to compare forest har
vesting effects in both basins, at equivalent levels of harvesting. An ECA 
value of 21%, representing the average ECA experienced in the Dead
man River following the MPB outbreak, was arbitrarily selected to 
generate the snapshot FFC. Differences or similarities in the treatment 
effect between the Deadman River watershed and nested Joe Ross Creek 
sub-basin can then be related to differences in physiographies, inher
ently expressed by each respective FFC. 

3.7.3. Uncertainty analysis 
Following a similar re-sampling procedure outlined by Yu & Alila, 

(2019), confidence intervals for the FFCs representing undisturbed 
(forested) conditions were calculated via a parametric bootstrap method 
using the R package “extRemes” (Gilleland & Katz, 2016). First, a 
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simulated sample of floods of length n, equal to the data originally fit to 
the model, are randomly generated from the parent GEV distribution. 
Next, the sample distribution is produced by fitting the sample floods to 
the GEV distribution, which is used to generate the quantiles of interest. 
This procedure is repeated through 10,000 iterations to obtain a sample 
of quantiles, which can then be used to calculate confidence intervals 
representing the 0.05 and 0.95 quantiles of the distribution. 

4. Results 

4.1. Detection: Nonstationary stochastic model development to determine 
flood drivers using probabilistic physics 

The preliminary control models for Big Creek indicated that, of the 

climate metrics used (e.g., 1-day, 3-day, 5-day total rainfall preceding 
the melt), the total 3-day rainfall and peak annual SWE provided the 
greatest improvement over the stationary model. Results from the 
likelihood ratio tests between the nonstationary and stationary models 
(Table 2) suggest improved model performance when the location 
parameter was modelled as a function of rain and/or snow, and the scale 
parameter modelled as a function of rain. Interestingly, time emerged as 
a significant covariate in the scale parameter, hinting towards the pos
sibility of a nonstationary time series. Omitting the ROS events from the 
record lowered the level of significance for all preliminary models 
containing rainfall metrics and increased significance when the warm
ing rate was included as a covariate (results not shown). 

The final control models (CMs) were evaluated based on AICc scores 
and are summarized in Table 3. CM3, with the location parameter 
varying linearly as a function of rain (3-day rainfall) and snow (peak 
annual SWE), and the scale parameter varying as a function of rain, was 
found to be the superior model using the full record. The final model 
based on the reduced record had the same covariates in the location 
parameter; however, it performed better without the scale parameter 
varying as a function of rain (CM2). Models CM6-CM9 were created to 
assess whether any additional variability could be explained by 
synoptic-scale teleconnections, although they did not result in an 
improvement over CM2 or CM3. Finally, time was introduced as a co
variate (CM10) to ensure there was no unexplained variability, which 
was confirmed by a likelihood ratio test between CM10 and CM1, and an 
increase in AICc scores for both records. 

In the Deadman River watershed, preliminary treatment models 
suggested that peak annual SWE, total 5-day rainfall, 3-day warming 
rate, and daily temperature were the best metrics to be included in the 
final models. The treatment models in Table 2 suggest that the location 
parameter should primarily be modelled as a function of snow, warming 
rate, and/or temperature, and the scale parameter as a function of rain 
and/or warming rate. The synoptic-scale teleconnections also improved 
the variability explained by the model when the scale parameter was 
modelled as a function of SOI, and when both the location and scale 
were modelled as a function of either SOI or PDO. Time was not a sig
nificant covariate when modelled on its own; however, ECA did emerge 
as significant in the location parameter, albeit at the 10 % significance 
level. 

Table 2 
Preliminary models used to determine covariate suitability for the control and 
treatment watersheds. Model suitability is determined based on the outcomes of 
a likelihood-ratio test between each nonstationary model and the stationary 
model. Outcomes are shown for the full record lengths.  

Covariate description Model 
description 

Control Treatment   

Big 
Creek 

Deadman 
River 

Joe Ross 
Creek 

Stationary (no 
covariates) 

Qp(μ, σ, ξ)    

Time (years) Qp(μ(time), σ, 
ξ) 

– – ✓c 

Qp(μ, σ(time), 
ξ) 

✓b – – 

Qp(μ(time), 
σ(time), ξ) 

✓b – ✓c 

Temperature (◦C) 
preceding the melt 

Qp(μ(temp), σ, 
ξ) 

– ✓c ✓a 

Qp(μ, σ(temp), 
ξ) 

– – – 

Qp(μ(temp), 
σ(temp), ξ) 

– – – 

Warming rate (◦C/day) 
preceding the melt 

Qp(μ(WR), σ, ξ) – ✓b – 
Qp(μ, σ(WR), ξ) – ✓c – 
Qp(μ(WR), 
σ(WR), ξ) 

– ✓b ✓b 

Precipitation as rain 
(mm) preceding the 
melt 

Qp(μ(rain), σ, 
ξ) 

✓a – – 

Qp(μ, σ(rain), 
ξ) 

✓a ✓a ✓b 

Qp(μ(rain), 
σ(rain), ξ) 

✓a ✓a ✓b 

Peak annual snow water 
equivalent (mm) 

Qp(μ(snow), σ, 
ξ) 

✓b ✓a ✓a 

Qp(μ, σ(snow), 
ξ) 

– – ✓c 

Qp(μ(snow), 
σ(snow), ξ) 

✓a ✓a ✓a 

Southern Oscillation 
Index 

Qp(μ(SOI), σ, ξ) – – – 
Qp(μ, σ(SOI), ξ) – ✓b ✓b 

Qp(μ(SOI), 
σ(SOI), ξ) 

– ✓c ✓c 

Pacific Decadal 
Oscillation 

Qp(μ(PDO), σ, 
ξ) 

– – – 

Qp(μ, σ(PDO), 
ξ) 

– – – 

Qp(μ(PDO), 
σ(PDO), ξ) 

– ✓b ✓b 

Equivalent Clearcut 
Area (%) 

Qp(μ(ECA), σ, 
ξ)  

✓c ✓b 

Qp(μ, σ(ECA), 
ξ)  

– – 

Qp(μ(ECA), 
σ(ECA), ξ)  

– ✓b 

- Not a significant improvement over the stationary model. 
a Significant over the stationary model at the 99% significance level. 
b ✓ Significant over the stationary model at the 95% significance level. 
c Significant over the stationary model at the 90% significance level. 

Table 3 
Nonstationary GEV models from the final model development for the control 
watershed Big Creek. Reduced record (n = 36) created by omitting four large 
rain-on-snow events from the record. Boldfaced values indicate the model with 
the lowest AICc score from each record.  

Model 
# 

Model description Full record Reduced record   

-Log-lik AICc -Log-lik AICc 

CM1 Qp(μ, σ, ξ)  173.89  354.44  141.53  289.81 
CM2 Qp(μ(rain, snow), σ, ξ)  164.46a  340.68  133.11a  278.21 
CM3 Qp(μ(rain, snow), σ(rain), 

ξ)  
160.37a  335.30  133.10a  281.10 

CM4 Qp(μ(rain), σ(rain, snow), 
ξ)  

163.59a  341.73  136.17b  287.23 

CM5 Qp(μ(rain, snow), σ(rain, 
snow), ξ)  

159.31a  336.12  133.05a  284.09 

CM6 Qp(μ(rain, snow, PDO), 
σ(rain), ξ)  

160.37a  338.25  133.09a  284.18 

CM7 Qp(μ(rain, snow, SOI), 
σ(rain), ξ)  

159.90a  337.30  131.48a  280.95 

CM8 Qp(μ(rain, snow), σ((rain, 
PDO)), ξ)  

160.23a  337.96  133.10a  284.19 

CM9 Qp(μ(rain, snow), σ((rain, 
SOI)), ξ)  

160.25a  338.01  133.08a  284.15 

CM10 Qp(μ(rain, snow, time), 
σ((rain, time)), ξ)  

159.46a  339.56  131.74a  284.82  

a Significant over the stationary model at the 99% significance level. 
b Significant over the stationary model at the 95% significance level. 
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Summary statistics from the likelihood ratio test between the sta
tionary and nonstationary models and AICc scores used to develop the 
final nonstationary models for the Deadman River are shown in Table 4. 
Deadman River treatment model 2 (DM-TM2) was created based on the 
two dominant covariates from the preliminary analysis (Table 2), 
namely, with the location parameter a function of snow and the scale 
parameter a function of rain. Snow was added to the scale parameter 
although did not improve model performance (DM3-TM3). Additional 
models were developed incorporating warming rate and temperature as 
covariates (DM-TM4 to DM-TM6). However, DM-TM4 proved to be the 
best-suited model, with the location parameter modelled as a function of 
snow and warming rate, and the scale parameter a function of rain. This 
model is termed the “final climate model” and accounts for the natural 
background variability invoked by local climate factors. 

Next, ECA was introduced to the final climate model (DM-TM4) to 
create models DM-TM7 to DM-TM9. AICc scores indicate an improve
ment in the variability explained by the model when the location 
parameter was also made a function of ECA (DM-TM7). A likelihood- 
ratio test between the final climate model (DM-TM4) and DM-TM7 in
dicates an improvement over the final climate model at the 95% sig
nificance level (p-value: 0.038). Synoptic scale teleconnections and time 
were then added as covariates to the final nonstationary model to ensure 
there was no remaining unexplained variability. Each case either 
resulted in a lack of convergence or an increase in AICc scores (DM- 
TM10 to DM-TM14). Therefore, DM-TM7 was selected as the final 
nonstationary model and used for the remainder of the attribution and 
quantification process. Using the full or reduced record did not make 
any difference in the final model outcomes in the Deadman River. 

For Joe Ross Creek, the total 5-day rainfall, 30-day warming rate, 
and 3-day average temperature were determined to be the best metrics 
to be included in the final model development. Notable differences 

between the preliminary models from Joe Ross Creek and those from the 
Deadman River were that, for Joe Ross Creek, warming rate was only 
significant when modelled with both the location and scale parameter 
together, time became a significant covariate in the location parameter 
alone and in both the location and scale parameter together, and a 
stronger signal was detected for ECA Table 2. 

The same combination of covariates used to initiate the final model 
development for the Deadman River was used to create the Joe Ross 
treatment model 2 (JR-TM2). However, the models were developed 
differently according to outcomes from the preliminary analysis in 
Table 2. The final models and associated summary statistics for Joe Ross 
Creek are shown in Table 5. Throughout the development of models JR- 
TM3 to JR-TM9, it became evident that model performance was 
improved when the location parameter was made a function of snow and 
warming rate and the scale parameter was made a function of either 
snow (JR-TM6) or rain (JR-TM7), but not both (JR-TM8 and JR-TM9). 
The final climate model was determined to be either JR-TM6 or JR- 
TM7, although a lack of convergence occurred when ECA was intro
duced to the model with the scale varying as a function of snow (JR- 
TM10). Interestingly, including rain in the location parameter of JR- 
TM11 further accounted for some unexplained variability, owing to 
the final nonstationary model JR-TM12. A likelihood-ratio test between 
JR-TM15 (the same model as JR-TM12 but without ECA) and JR-TM12 
indicates that including ECA in the model is an improvement at the 95% 
significance level (p-value: 0.0029). Including synoptic-scale climate 
indices and time into the final nonstationary model did not improve 

Table 4 
Nonstationary GEV models from the final model development for the treatment 
watershed Deadman River. Reduced record (n = 39) created by omitting an 
anomalous high flood value. Boldface values indicate the model with the lowest 
AICc score from each record.    

-Log-lik AICc -Log-lik AICc 

Model 
# 

Model description Full record Reduced record 

DM- 
TM1 

Qp(μ, σ, ξ)  137.37  281.41  128.89  264.46 

DM- 
TM2 

Qp(μ(snow), σ(rain), ξ)  128.08a  267.92  120.07a  251.96 

DM- 
TM3 

Qp(μ(snow), σ(snow, 
rain), ξ)  

128.07a  270.68  119.93a  254.48 

DM- 
TM4 

Qp(μ(snow, WR), 
σ(rain), ξ)  

122.18a  258.90  113.87a  242.37 

DM- 
TM5 

Qp(μ(snow, WR, temp), 
σ(rain), ξ)  

122.16a  261.83  113.87a  245.35 

DM- 
TM6 

Qp(μ(snow), σ(rain, 
WR), ξ)  

128.08a  270.70  119.31a  253.24 

DM- 
TM7 

Qp(μ(snow, WR, ECA), 
σ(rain), ξ)  

119.99a  257.47  111.72a  241.05 

DM- 
TM8 

Qp(μ(snow, WR), σ(rain, 
ECA), ξ)  

120.47a  258.44  112.65a  242.92 

DM- 
TM9 

Qp(μ(snow, WR, ECA), 
σ(rain, ECA), ξ)  

119.50a  259.64  111.63a  244.05 

DM- 
TM10 

Qp(μ(snow, WR, ECA, 
PDO), σ(rain), ξ)  

119.74a  260.13  111.72a  244.24 

DM- 
TM11 

Qp(μ(snow, WR, ECA), 
σ(rain, PDO), ξ)  

98.18~  217.01  81.64~  184.08 

DM- 
TM12 

Qp(μ(snow, WR, ECA, 
SOI), σ(rain), ξ)  

119.74a  260.13  104.27a  229.34 

DM- 
TM13 

Qp(μ(snow, WR, ECA), 
σ(rain, SOI), ξ)  

90.77~  202.19  78.99~  178.78 

DM- 
TM14 

Qp(μ(snow, WR, ECA, 
time), σ(rain, time), ξ)  

118.99a  261.97  111.20a  246.61  

a Significant over the stationary model at the 99% significance level. 
~ Indicates a lack of convergence to a non-optimum point. 

Table 5 
Nonstationary GEV models used in final model development for the treatment 
catchment Joe Ross Creek. Boldface values indicate the model with the lowest 
AICc score.  

Model # Model description -Log- 
lik 

AICc 

JR-TM1 Qp(μ, σ, ξ)  53.22  113.44 
JR-TM2 Qp(μ(snow), σ(rain), ξ)  46.33a  105.39 
JR-TM3 Qp(μ(snow), σ(snow, rain), ξ)  49.20b  111.12 
JR-TM4 Qp(μ(snow, rain), σ(rain), ξ)  46.33a  108.66 
JR-TM5 Qp(μ(snow, rain), σ(snow, rain), ξ)  16.43~  52.46 
JR-TM6 Qp(μ(snow, WR), σ(snow), ξ)  42.95a  101.91 
JR-TM7 Qp(μ(snow, WR), σ(rain), ξ)  43.26a  102.52 
JR-TM8 Qp(μ(snow, WR), σ(WR), ξ)  19.40~  54.80 
JR-TM9 Qp(μ(snow, WR), σ(snow, rain), ξ)  9.40~  38.41 
JR- 

TM10 
Qp(μ(snow, WR, ECA), σ(snow), ξ)  8.16~  35.92 

JR- 
TM11 

Qp(μ(snow, WR, ECA), σ(rain), ξ)  41.21a  102.01 

JR- 
TM12 

Qp(μ(snow, WR, rain, ECA), σ(rain), ξ)  37.97a  99.53 

JR- 
TM13 

Qp(μ(snow, WR, rain), σ(rain, ECA), ξ)  40.81a  105.20 

JR- 
TM14 

Qp(μ(snow, WR, rain, ECA), σ(rain, ECA), ξ)  37.79a  103.57 

JR- 
TM15 

Qp(μ(snow, WR, rain), σ(rain), ξ)  42.41a  104.42 

JR- 
TM16 

Qp(μ(snow, WR, rain, ECA, PDO), σ(rain), ξ)  37.48a  102.96 

JR- 
TM17 

Qp(μ(snow, WR, rain, ECA), σ(rain, PDO), ξ)  37.96a  103.92 

JR- 
TM18 

Qp(μ(snow, WR, rain, ECA, PDO), σ(rain, PDO), 
ξ)  

37.45a  105.75 

JR- 
TM19 

Qp(μ(snow, WR, rain, ECA, SOI), σ(rain), ξ)  36.56a  101.12 

JR- 
TM20 

Qp(μ(snow, WR, rain, ECA), σ(rain, SOI), ξ)  37.95a  103.89 

JR- 
TM21 

Qp(μ(snow, WR, rain, ECA, SOI), σ(rain, SOI), ξ)  10.37~  53.68 

JR- 
TM22 

Qp(μ(snow, WR, rain, ECA, time), σ(rain, time), 
ξ)  

17.21~  67.36  

a Significant over the stationary model at the 99% significance level. 
b Significant over the stationary model at the 95% significance level. 
~ Indicates a lack of convergence to a non-optimum point. 
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model performance, ruling out the possibility of any remaining vari
ability in the flood distribution. 

4.2. Attributing forest harvesting as a nonstationary driver of floods 

Quantiles from the final nonstationary control and treatment models 
(CM12, DM-TM7, and JR-TM12) were extracted to produce a time series 
of return levels, showing how an event of a fixed frequency (e.g., the 10- 
year return period) is changing in magnitude over the study period. 
These are termed return level plots and are illustrated for the 2-, 7- and 
50-year return period events in Fig. 4. A trendline can then be fit to the 
return level time series to determine whether there is a trend in the 
treatment but not in the control. The trendlines also indicate how floods 
of different frequencies differ in response to harvesting, by comparing 
the slopes of each return level trendline. 

A visual inspection reveals an increasing trend in both treatment 
watersheds (Fig. 4b & c); however, this also appears to emerge for the 
50-year return level for the control watershed Big Creek (Fig. 4a). To 
validate whether the apparent trend is real, a trend analysis was con
ducted on each of the return level time series. P-values from the trend 
tests are summarized in the inset table in the upper right-hand corner of 
each plot in Fig. 4. 

Despite an apparent trend in the control watershed, the trend tests 
reveal no significant trend (Fig. 4a), rendering the Big Creek time series 
suitable as a control. Furthermore, omitting the four ROS events from 
the Big Creek record and re-running the analysis, caused the slope of the 
trendline for all return levels to flatten (Fig. 5). Comparatively, trends 
were detected for most return levels in the Deadman River time series, 
and for nearly all return levels in the Joe Ross Creek time series (Fig. 4b, 
c). However, the level of significance tended to decrease with increasing 
return period or flood magnitude. For Joe Ross Creek, trends were 
generally detected at higher levels of significance than in the Deadman 
River. 

4.3. Quantifying nonstationarity invoked by harvesting 

Snapshot in time FFCs are created using the final nonstationary 
models with their respective fixed long-term average climate covariate 
values while allowing the distribution parameters to vary only as a 
function of ECA. Only the location parameter was modelled to change 
with ECA since there was no improved model performance with ECA in 
the scale parameter. An ECA value of 21% was set for both treatment 
watersheds, representing the average ECA experienced in the Deadman 
River following the MPB outbreak. Additionally, an ECA value of zero 
was used to develop a curve representing the no harvest scenario. 

The snapshot in time FFCs are illustrated in Fig. 6, with red arrows 
showing how the 7-year, 20-year, and 50-year return period events are 
changing in frequency from a no harvest scenario to an ECA of 21%. 
Changes to the mean and variability of the FFC invoked by harvesting 
are displayed in the upper right-hand corner of each plot. In the Dead
man River, ECA levels of 21% caused the mean of the flood frequency 
distribution (represented in the form of an FFC), to increase relative to 
the no harvest scenario by 38.1%, with negligible influence on the 
variability (+0.3%) (Fig. 6). An increase in the mean of 38.1%, invoked 
by harvest levels experienced at the end of the study period, caused flood 
events to become 2.3 to 6.3 times more frequent, with larger increases in 
frequency occurring for higher magnitude flood events. A 21% ECA 
caused the 7-year event to become a 3-year event, the 20-year event to 
become a 5-year event, and the 50-year event to become an 8-year event. 
In Joe Ross Creek, ECA levels of 21% caused the mean to increase by 
84.2%, causing the 7-year, 20-year, and 50-year flood events to increase 
in frequency to become less than a 2-year, 4-year, and 7-year event, 
respectively (Fig. 6). This translates to an increase in the frequency of 
the 7- and 50-year flood events by 3.9 to 7.1 times, respectively. Like the 
Deadman River, harvesting had a negligible effect on flood variability 
(+0.6%) in Joe Ross Creek. 

Fig. 6 illustrates that the nested Joe Ross Creek sub-basin experi
enced nearly double the increase in the mean compared to the greater 
Deadman watershed (84.2% vs. 38.1%) with the same level of har
vesting. However, with only slightly larger increases in frequency for 
smaller event magnitudes and nearly no difference for infrequent floods. 
In both treatment basins, changes in frequency increased with 
increasing event size. Changes in magnitude relative to the no harvest 
(0% ECA) scenario are expressed in Table 6 for harvest levels experi
enced at the end of the study period in each basin, and for an arbitrarily 
set ECA value of 21% (boldfaced values), to allow the comparison of 
harvesting effects on floods between basins. 

5. Discussion 

5.1. Stochastic physics reveals the effects of climatic drivers on floods 

An understanding of the physical drivers of floods can be interpreted 
by evaluating which climatic factors emerged as dominant covariates 
throughout the modelling procedure. The specific parameter (e.g., 
location or scale) modelled as a function of each climate covariate in
dicates how that climatic factor is affecting floods, whereby the location 
and scale parameters are proxies for the mean and variability around the 
mean of floods, respectively. 

Based on the final nonstationary model for Big Creek CM3 (Table 3), 
the amount of snow on the ground and rain preceding the melt emerged 
as the dominant flood drivers. These findings are in accordance with a 
linear regression-based modelling study conducted by Curry & Zwiers, 
(2018), who evaluated controls on floods in various catchments 
throughout the Fraser River Basin, BC. At Big Creek, the mean of the 
flood distribution was found to be related to rain and snow, and the 
variability a function of rain. However, after omitting the four largest 
floods on record (each generated by large ROS events), and re- 
developing the nonstationary models, rain no longer influenced flood 
variability (CM3). This reinforces the physical basis of the climate 
covariates used during the model development and suggests that during 
the four large ROS events, flood magnitude and particularly variability 
were dominantly controlled by precipitation as rain. Despite sitting at a 
higher elevation, the proximity of Big Creek to the coast makes it much 
more susceptible to ROS events compared to the treatment basins to the 
east. Trubilowicz & Moore (2017) found that in the coast mountains, 
snowmelt increased the amount of water available for runoff during 
large ROS events (defined as events with > 40 mm of rain) by 25% on 
average, compared to rainfall events alone. The four largest flood events 
in Big Creek were associated with between 42 and 49 mm of rainfall in 
the three days preceding the melt and at least some rain fell within three 
days of the melt on 30 out of the 40 years of record. Therefore, it comes 
as no surprise that both the mean and variability of floods were largely 
influenced by rain. 

In the Deadman River and Joe Ross Creek, the final nonstationary 
models DM-TM7 (Table 4) & JR-TM12 (Table 5) indicated that floods 
were dominantly controlled by the amount of snow on the ground, 
warming rate, and finally rain preceding the melt, consistent with the 
outcomes of Curry & Zwiers (2018). Unlike at Big Creek, the mean of the 
flood frequency distribution in the treatment basins was also influenced 
by increasing temperature in the days leading up to the flood event 
(warming rate). This difference is partially attributed to differences in 
slope and aspect distribution between the control and treatment basins, 
but more dominantly by changes in the snow-energy dynamics from the 
conversion of forested to unforested conditions. The emergence of 
warming rate in the final nonstationary treatment models further vali
dates the physical basis of the modelling exercise. Under forested con
ditions, the forest canopy reduces wind which suppresses turbulent heat 
exchange (Harding & Pomeroy, 1996), and canopy extinction prevents 
shortwave radiation from reaching the below canopy snowpack (Ellis & 
Pomeroy, 2007; Link & Marks, 1999). The influence of canopy extinc
tion on the snowpack is greatest on poleward-facing slopes, which 
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Fig. 4. Estimated 2-, 7- and 50-year return period flood magnitudes and associated trendlines over the study period, as predicted by the final nonstationary models. 
Numbers in red are p-values from the Pettitt change-point detection, parametric Pearson’s r, and the non-parametric Mann-Kendall and Spearman’s rho trend 
detection tests. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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receives greater amounts of shortwave radiation from insolation (Ellis 
et al., 2011). Therefore, longwave radiation emitted from vegetation to 
the snowpack is the dominant energy source for snowpack warming and 
melt under forested conditions (Black et al., 1991), particularly on 
north-facing aspects (Ellis et al., 2011). Big Creek has dominantly north- 
facing steeper slopes, whereas the treatment watersheds have either a 
south-dominant (Joe Ross Creek) or mixed aspect distribution (Dead
man River) with subdued slopes (Fig. 2). The physiography of the 

treatment basins makes them much more responsive to solar radiation 
(Ellis et al., 2011; Jost et al., 2007; Musselman et al., 2015) and hence 
warming. 

The conversion from forested to unforested land-cover throughout 
the Deadman River watershed is expected to have caused a shift from 
longwave to shortwave radiation-driven melt and an increase in the total 
net radiation reaching the snowpack (Ellis et al., 2011; Varhola et al., 
2010b). Any reduction in longwave radiation with tree removal is 

Fig. 5. Return level plot for Big Creek based on the reduced record without the four rain-on-snow events.  

Fig. 6. Snapshot flood frequency curves from the final nonstationary models at a normalized ECA value of 21% for the Deadman River watershed (upper) and Joe 
Ross creek sub-basin (lower) using climate covariate values averaged over the study period. Red arrows indicate changes in frequency invoked by harvesting and the 
dotted black line indicates the 95% confidence interval for the no harvest FFC. Changes in the mean and variability are indicated in the upper right of each plot. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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hypothesized to be outweighed by increases in shortwave radiation from 
greater insolation, resulting in earlier and more rapid melting (e.g., Zhao 
et al., 2021), and hence greater amounts of moisture reaching the outlet. 
Based on findings from a similar study by Yu & Alila (2019) in the Camp 
Creek watershed, roughly 200 km southeast of the Deadman River, flood 
variability was influenced by temperature (or warming rate) due to an 
acceleration of the melt with the conversion from longwave- to 
shortwave-dominated snowmelt following harvest. However, in the 
treatment watersheds of this study, warming rate was found only to be 
related to the location parameter in the final nonstationary models, 
despite early indications from the preliminary models of an influence on 
flood variability (Table 2). It is hypothesized that any influence of 
warming rate on flood variability was buffered by the melt pattern 
induced by the basin physiography and abundant lakes distributed 
throughout both treatment basins. Therefore, warming rate is expected 
to have only affected the mean of the flood distribution by increasing the 
amount of moisture reaching the outlet during flood events. 

Rainfall was also found to play a role in the variability of floods at 
Deadman River and in both the mean and variability of floods at Joe 
Ross Creek. Relative to Big Creek, the quantity of rain and the number of 
years that experienced rainfall in the days leading up to the melt was 
much lower in the treatment basins. Furthermore, the 5-day rainfall, 
rather than the 3-day rainfall in Big Creek, was found to be the dominant 
rainfall metric. This suggests that rainfall dominantly acts as a snow 
ripening agent in the treatment basins in the week or so leading up to the 
peak flood date, thereby increasing the variability in runoff response in 
years when only significant rainfall has occurred. Flood variability by 
rain may not have been buffered by the lake systems due to rain falling at 
lower elevations below the snowline and on portions of the catchments 
downstream of the lakes. The influence of rain on the mean of floods in 
Joe Ross Creek but not in the larger Deadman River could be due to its 
smaller basin area. Rain events in the spring are more likely to uniformly 
cover the smaller Joe Ross Creek, which may otherwise be attenuated by 
the larger catchment area of the Deadman River (Blöschl & Sivapalan, 
1997). 

Interestingly, indices of PDO and ENSO did not emerge as dominant 
predictors of floods in either control or treatment basins, despite in
dications to the contrary from the preliminary models (Table 2). It is 
hypothesized that the signal of local climate factors on floods in the 
study basins is stronger than the signal from synoptic-scale tele
connections. This could be due to the correlation between the 

teleconnections and the local climate factors (e.g., snow, temperature, 
rain) driving floods in each basin (Thorne & Woo, 2011). Additionally, 
the 28- and 40-year flood records may have been too short to fully 
capture the influence of PDO, which oscillates between positive and 
negative phases at a frequency of 20–30 years (Mantua & Hare, 2002). 

5.2. Stochastic physics reveals the effects of forest harvesting on floods 

Much like the evaluation of climate covariates in the previous sec
tion, the influence of ECA on the flood frequency distribution can be 
used in conjunction with the current understanding of stand- and 
watershed-scale physics to infer how harvesting has affected floods in 
the treatment basins. In interior BC, forest harvesting generally causes 
an increase in snow accumulation with reduced canopy interception and 
an increase in snow ablation rate from increased energy input to the 
snowpack via solar radiation (e.g., Bewley et al., 2010; Winkler et al., 
2014) and turbulent heat exchange (Boon, 2009). As mentioned previ
ously, the removal of forest cover typically causes a shift from longwave- 
dominated snowmelt under forested conditions (Black et al., 1991) to 
shortwave-dominated melt in unforested conditions (Ellis et al., 2011; 
Ellis & Pomeroy, 2007). These stand-level effects translate to greater 
moisture availability at the catchment scale in the spring and can cause 
earlier melting (Winkler et al., 2015), although responses vary 
depending on watershed slope and aspect (Ellis et al., 2011; Jost et al., 
2007). 

Green & Alila (2012) proposed a conceptual model (Green & Alila, 
2012; Figure 7, p.17) to illustrate how changes in the flood frequency 
distribution can be used to infer the influence of basin characteristics on 
harvesting induced changes in stand-level snow and melt processes, and 
how these changes are aggregated as a watershed-scale response at the 
outlet. They proposed that the conversion from longwave to shortwave- 
dominated snowmelt following harvesting caused the mean (location 
parameter) of the flood frequency distribution to increase. Such an in
crease in the mean is indicative of an increase in the amount of moisture 
available for runoff due to increased snow in the spring following har
vest (e.g., Bewley et al., 2010; Winkler et al., 2014) and potential in
creases in snowmelt synchronization caused by the spatial distribution 
of cutblocks. Changes in the variability (scale parameter) of the distri
bution were interpreted as a change in the efficiency by which water is 
delivered to the outlet. In snow environments, Green & Alila (2012) 
posited that changes in the variability were caused by snowmelt syn
chronization or desynchronization induced by the spatial distribution of 
harvesting across aspect and elevation, and between snowpack in cut
blocks versus neighboring forested stands. A stochastic understanding of 
synchronization/desynchronization processes has been applied in the 
rain environment outside of forest hydrology, where environmental 
controls such as basin geometry (e.g., Ayalew & Krajewski, 2017) and 
basin size (e.g., Blöschl & Sivapalan, 1997) influence runoff synchro
nization/desynchronization at the outlet. In snow environments, 
elevation and the distribution of slope and aspect, have been shown to 
influence the synchronization and desynchronization of runoff in both 
the CP- (e.g., Hendrick et al., 1971) and FP-based (e.g., Schnorbus & 
Alila, 2013) frameworks. When topography is subdued and aspects are 
unevenly distributed, snowmelt is synchronized, while a larger range in 
elevation and/or distribution of aspects can cause snowmelt to become 
desynchronized. These concepts, in concert with the current under
standing of harvesting induced changes to stand-level energy dynamics, 
formed the basis of the conceptual model created by Green & Alila 
(2012; Figure 7, p.17). 

Previous stationary (Green & Alila, 2012) and nonstationary (Yu & 
Alila, 2019) frequency-based paired-watershed studies at Camp Creek, a 
37 km2 snow-dominated headwater catchment in interior BC, found that 
harvesting at mid-to-high elevations, particularly on south-facing as
pects, caused snowmelt generated from harvested blocks to melt earlier 
and synchronize with melt from forested stands at lower elevations. 
Another FP-based study conducted in a 470 ha catchment within the 

Table 6 
Flood magnitudes at various levels of harvesting predicted by the final nonsta
tionary models for the Deadman River (DM-TM7) and Joe Ross Creek (JR-TM12) 
watersheds. Percentage values in parentheses indicate the increase in flood 
magnitude relative to the no harvest (0% ECA) scenario. Values in boldface 
illustrate the changes in magnitude invoked by the same level of harvest in each 
treatment watershed.  

Return 
period 
(years) 

Deadman River flood magnitude 
(m3/s) 

Joe Ross Creek flood magnitude 
(m3/s)  

No 
harvest 

ECA 
21% 

ECA 
29% 

No 
harvest 

ECA 
21% 

ECA 
39% 

2  10.19 13.96 
(37%) 

15.45 
(52%)  

1.69 3.21 
(89%) 

4.47 
(164%) 

5  14.6 18.36 
(26%) 

19.85 
(36%)  

2.65 4.17 
(57%) 

5.42 
(105%) 

7  15.65 19.42 
(24%) 

20.91 
(34%)  

2.94 4.46 
(51%) 

5.72 
(94%) 

10  16.59 20.35 
(23%) 

21.84 
(32%)  

3.23 4.75 
(47%) 

6.01 
(86%) 

20  18.01 21.77 
(21%) 

23.26 
(29%)  

3.74 5.26 
(40%) 

6.52 
(74%) 

50  19.33 23.10 
(19%) 

24.59 
(27%)  

4.35 5.87 
(35%) 

7.13 
(64%) 

100  20.05 23.81 
(19%) 

25.30 
(26%)  

4.77 6.29 
(32%) 

7.54 
(58%)  
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upper Penticton Creek experimental watershed found that the spatial 
distribution of harvesting on the subdued topography caused an increase 
in snowmelt synchronization, which resulted in an increase in both the 
mean and variability of the peak flow frequency distribution (Schnorbus 
& Alila, 2013). 

The final nonstationary models for the Deadman River and Joe Ross 
Creek indicate that ECA caused an increase in the mean but not the 
variability of floods (Fig. 6). Similar to Green & Alila (2012), Schnorbus 
& Alila (2013), and Yu & Alila (2019), an increase in the mean is ex
pected to be dominantly caused by an increase in the amount of moisture 
available for runoff following harvest. It is also hypothesized that an 
increase in net radiation, and hence snowmelt synchronization 
following harvest, may also increase the mean. However, unlike in 
previous studies (e.g., Schnorbus & Alila, 2013), harvesting did not 
appear to alter flood variability. It is hypothesized that the potential for 
harvesting to cause an increase in variability in the Deadman River and 
Joe Ross Creek was limited by the basin characteristics and spatial dis
tribution of harvesting, which inhibited any potential increase in 
snowmelt synchronization. 

The upper plateau of the Deadman River basin (including the Joe 
Ross Creek sub-basin), where much of the flood generating snowpack is 
located, has highly subdued topography (Fig. 2b), suggesting snowmelt 
before harvesting likely already occurred relatively synchronously. 
Furthermore, harvesting in both basins was evenly spatially distributed 
across all aspects and elevation bands, except for the low elevations 
along the floodplain (Fig. 2). It is posited, based on the location of the 
cutblocks, that harvesting may not have further induced snowmelt 
synchronization, and therefore did not influence flood variability. 
Additionally, both basins have a high abundance of lakes and wetlands 
(Table 1, Fig. 2a). These lakes are widespread throughout the basin and 
can act to attenuate flow (Chen et al., 2021a; Luo et al., 2021), dissi
pating any potential harvesting-induced increases in flood variability by 
extending flood duration (Ravazzani et al., 2014). Flood variability at 
Deadman River is expected to be more greatly attenuated due to the 
additional presence of a series of large lake systems along the main 
channel downstream of Joe Ross Creek. Although much larger reservoir 
systems can mitigate flood response (e.g., Ayalew et al., 2013, 2015; 
Thomas et al., 2016; Volpi et al., 2018), the effect on flood magnitude at 
the outlet of the Deadman River is expected to be negligible. However, 
an increase in flood duration (Ravazzani et al., 2014; Volpi et al., 2018) 
is expected to have limited any potential increases in variability (e.g., 
Bradley & Potter, 1992; Fig. 5 p. 2397). Despite a lack of larger lakes 
along the main channel, flood variability in Joe Ross Creek is still ex
pected to be buffered by the small lakes distributed throughout the 
upper reaches of the basin, although to a lesser extent than in the greater 
Deadman River watershed. This is evident based on the apparent in
fluence of ECA on variability during the preliminary model development 
for Joe Ross Creek (Table 2). The findings in this study further support 
the notion proposed by Green & Alila (2012) that the effects of logging 
on the magnitude–frequency relation is controlled not only by the cut- 
rate but also the physiographic characteristics of the watershed and 
the spatial distribution of the cutblocks. 

5.3. Differentiating between changes in land cover and climate as drivers 
of nonstationarity 

Nonstationary drivers, as defined by Slater et al. (2021, p.3911), are: 
“longer-term processes which may cause significant shifts in the underlying 
distributions of hydroclimatic extremes via climate or land cover change”. 
Nonstationarity invoked by climate change typically occurs over multi- 
decadal to millennial timescales, whereas changes in land cover can 
occur over much shorter periods (Slater et al., 2021). This means that 
nonstationarity in the flood time series may occur from climate change, 
land cover change, or a combination of both over the 40-year study 
period. The question then becomes: once a shift in the underlying flood 
frequency distribution has been detected, how can that shift be 

attributed to a single nonstationary driver? Answering this question 
becomes further complicated in dynamically driven systems (Trenberth 
et al., 2015) where causes are multiple and chancy (Karhausen, 2000), 
and the magnitude of extreme events can be compounded; multiple 
drivers can work either synergistically to amplify or antagonistically to 
buffer the response (Aghakouchak et al., 2020; Hall & Perdigao, 2021; 
Slater et al., 2021). Moreover, the detection of a trend may be dependent 
on the period of record selected (e.g., Harrigan et al., 2018). 

Any changes to the flood frequency distribution invoked by a 
changing climate over the study period will be expressed through the 
climate covariates used in the nonstationary models. The climate 
covariates enable the effect of harvesting on floods in the treatment 
watershed to be isolated, but on their own do not warrant attribution. 
Ruling out a changing flood frequency distribution from anything other 
than harvesting is fundamental in controlling the experiment and 
enabling any change to the distribution in the treatment watersheds to 
be attributed to harvesting; therein lies the role of the control watershed 
in this new nonstationary paired watershed study design. 

Despite what appears as an increase in flood return periods in Big 
Creek over the study period (Fig. 4), no significant trend was detected by 
any of the trend tests. This apparent trend is hypothesized to be an 
artifact of the high variability imposed by the four ROS events during the 
relatively short time series. This is validated by a flattening of the slope 
in the return level plot after the ROS events were removed from the time 
series (Fig. 5). Although flood trends in the control basin may be 
influenced by climate over longer periods (Burn & Elnur, 2002), the 
outcomes from the trend detection tests suggest that the flood time series 
can be considered stationary over the study period after accounting for 
the natural background variability. With no significant trend detected in 
the control catchment, any significant trend detected in the treatment 
basins can be solely attributed to forest harvesting and ruled a nonsta
tionary driver of change to the underlying flood frequency distribution. 

The return level plots for Deadman River and Joe Ross Creek (Fig. 5) 
indicate that floods between the 2- and 50-year return periods are 
increasing in magnitude over the study period. In general, lower p- 
values were found for trends in Joe Ross Creek compared to those in 
Deadman River. P-values increased (decreased in significance) with 
increasing return period. As mentioned in Section 3.7.1, a lack of sta
tistical significance does not necessarily warrant a lack of practical or 
physical significance, provided physically plausible reasoning. Consid
ering the severe practical consequences, and the consistency with out
comes from stationary (Alila et al., 2009; Green & Alila, 2012; 
Schnorbus et al., 2010; Schnorbus & Alila, 2004, 2013) and nonsta
tionary (Yu & Alila, 2019) frequency-based studies evaluating the effect 
of harvesting on floods in snow-dominated catchments of B.C., the re
turn period trends in Joe Ross Creek and Deadman River are interpreted 
to be highly plausible. Physical reasoning for these harvesting-induced 
increases in magnitude was explained in Section 5.2. 

Larger (less significant) p-values for higher return period events may 
have occurred for two main reasons: (i) high infrequent flood variability 
within the relatively short record (Fig. 4), and (ii) relatively low harvest 
levels throughout the first 30-years of record (Fig. 3). As such, trends in 
higher return period events may have been obscured by the high vari
ability. The effect of harvesting, particularly for less frequently occur
ring events, may have not been fully manifested in the observed flood 
time series and, hence, by the stochastic models during the relatively 
short period of increased harvest levels following the MPB outbreak in 
the early 2000s. Trends in higher return period events would be ex
pected to become more distinct if a longer record were available. 
Additionally, lower p-values in Joe Ross Creek are posited to be asso
ciated with the higher and more rapid increase in ECA near the end of 
the record, and dominantly south and southwest aspects (Fig. 3). 

R.S.H. Johnson and Y. Alila                                                                                                                                                                                                                  



Journal of Hydrology 625 (2023) 129970

17

5.4. Quantification and comparison of the effect of forest harvesting in the 
Deadman River basin and Joe Ross Creek sub-basin 

Despite no harvesting-induced changes in the variability of the flood 
frequency distribution, increases in the mean caused flood events across 
all return periods to increase in both magnitude and frequency (Fig. 4 & 
Fig. 6; Table 6). At Deadman River, average harvesting levels experi
enced after the MPB outbreak (21% ECA) caused the mean of the fre
quency distribution to increase by 38.1% from no harvest conditions. 
This increase caused the 7-year, 20-year, and 50-year flood events to 
occur at a frequency of 3-years, 5-years, and 8-years, respectively 
(Fig. 6). At Joe Ross Creek an ECA of 21% caused an 84.2% increase in 
the mean, and the 7-year, 20-year, and 50-year events changed in fre
quency to become < 2-year, 4-year, and 7-year flood events, respectively 
(Fig. 6). The greater increase in the mean at Joe Ross Creek is hypoth
esized to have occurred due its higher median basin elevation and hence 
greater basin-wide snowpack, and dominantly south-facing aspect, 
making it much more responsive to changes in energy following harvest. 
Despite over twice the increase in the mean at Joe Ross Creek, increases 
in frequency were generally comparable in the Deadman River. The 
greater sensitivity of frequency from smaller increases in the mean at 
Deadman River is due to the shallower sloping FFC. The concept that 
basins with milder-sloping, or concave down, FFCs are more sensitive to 
harvesting was hinted at by Berris & Harr (1987, p. 141), although was 
not incorporated into forest hydrology research until much more 
recently (e.g., Alila et al., 2009; Bewley et al., 2010; Green & Alila, 
2012). Green & Alila (2012) pointed out how snow environments can 
generally be characterized by relatively gentle-sloping FFCs. It is this 
inherent nature, imposed by the probabilistic physics of the snowmelt- 
driven flood regime, which cause relatively minor increases in magni
tude, especially in the upper tail of the distribution, to cause surprisingly 
large changes in frequency. Greater sensitivity in the tail of the fre
quency distribution is a widely recognized facet in the climatology (e.g., 
Swain et al., 2020) and wider hydro-climatology literature: 

“Even modest increases in the magnitude of events in the tails of the 
distribution can have a very substantial impact on the expected return 
times of events of a given magnitude.” 

-(Allen & Ingram, 2002; p. 229). 
This phenomenon is evident in both treatment basins (Fig. 6); 

however, the relatively milder sloping FFC for Deadman River makes it 
particularly susceptible to surprisingly large changes in frequency. 

Relative changes in flood magnitude invoked by an ECA of 29% 
(21%) at Deadman River ranged from a 52% (37%) increase for the 2- 
year event to a 26% (19%) increase for the 100-year event (Table 6). 
At Joe Ross Creek, such relative change in flood magnitude for an ECA of 
39% (21%) ranged from 164% (89%) for the 2-year event to 58% (32%) 
for the 100-yr event (Table 6). The fact that the relative increase in 
magnitude becomes smaller with increasing event size has been previ
ously used to support the notion that the influence of forest cover de
creases with increasing event size (e.g., Bathurst et al., 2011; Birkinshaw 
et al., 2011; Jones et al., 2000). However, these relative decreases are 
deceptive and irrelevant (Green & Alila, 2012) as they do not convey the 
true influence of harvesting on larger flood events. They were reported 
in this study to illustrate how an evaluation of the changes in flood 
magnitude in relative terms is misleading. Despite smaller relative in
creases in magnitude, changes in frequency increase with increasing 
event size (Fig. 6). Furthermore, even though the Deadman River had 
smaller relative increases in magnitude compared to Joe Ross Creek, the 
shallower slope of the FFC at Deadman River dictates that these in
creases have a greater effect in terms of changes in frequency. In other 
words, the flattening of the FFC with increasing basin size causes the 
flood regime of larger basins to be inherently more sensitive to forest 
harvesting, where even modest changes in magnitude translate to large 
changes in frequency. Therefore, it is the absolute changes in magnitude 

and corresponding changes in frequency which are of scientific, phys
ical, and practical relevance. 

The changes in frequency reported for both basins in this study are 
substantive, and if true, can have considerable physical and practical 
downstream consequences. Furthermore, there appeared to be no return 
period threshold beyond which forest harvesting did not affect floods, 
and the sensitivity to harvest increased with increasing flood event size 
and basin area (Fig. 6). Despite running counter to the prevalent 
deterministic CP-based perception of forests and floods, these findings 
are less surprising when evaluated as part of the wider stochastic hy
drology literature. Frequency-based studies from the wider hydrology 
community (e.g., Brath et al., 2006; Castellarin & Pistocchi, 2012; 
Duncan, 1995; Hurkmans et al., 2009; Kay et al., 2006; Lavigne et al., 
2004; Modrick & Georgakakos, 2015; Pall et al., 2011; Preti et al., 2011; 
Reynard et al., 2001; Siriwardena et al., 2006; Svoboda, 1991; Te Linde 
et al., 2010; Zhang et al., 2018), illustrate the sensitivity of the upper tail 
of the flood frequency distribution to changes in climate and/or land 
cover. For example, a study conducted in five small rain-dominated 
catchments near Nelson, New Zealand, compared measured flood fre
quency curves for pine and pasture land and reported a roughly 50% 
increase in magnitude for the 50-year return period flood event, corre
sponding to a ten-fold increase in frequency (Duncan, 1995; Fig. 5, p. 
23). Reynard et al. (2001) investigated the implications of increasing 
forest cover to mitigate increased flood risk associated with climate 
change in two large (>9,000 km2) watersheds in the United Kingdom. 
The authors reported greater proportional increases in modelled flood 
frequency for extreme flood events (Reynard et al., 2001, p. 357). 

What may be most remarkable is that substantive changes in fre
quency for large events can be induced by even modest increases to the 
mean, which may be further amplified by increases in variability. This is 
an established fact among hydro-climatologists (Katz, 1993; Katz & 
Brown, 1992; Schaeffer et al., 2005; Wigley, 1985, 2009). To illustrate 
this phenomenon, outcomes from several stochastic hydrology studies 
are showcased in Table 7. As an example, as little as a 30% increase in 
the mean and a 1% increase in the variability of the frequency distri
bution caused the 20-year flood event to double in frequency (Green & 
Alila, 2012). Large flood events can be affected by changes to the mean 
as an increase in the mean causes the entire frequency distribution to 
shift upwards. This increase is not limited to smaller events and is 
manifested throughout the entire FFC, which can be further exacerbated 
by an increase in variability. Greater sensitivity in the upper tail of the 
FFC occurs from either a divergence (increase in the variability) or 
parallelism (increase in only the mean) in the frequency curves for the 
pre-and post-land cover or climate change scenarios. In the context of 
forest hydrology research, observed and simulated records in both rain 
and snow regimes have produced diverging or parallel running FFCs 
which can persist up to the 100-year event for a snow regime (Kuraś 
et al., 2012; Fig. 5 p.9; Schnorbus and Alila, 2004, 2013; Fig. 9, p. 10, 
Schnorbus & Alila, 2013; Fig. 6, p. 525), and up to the 1000-year event 
for a rain regime (Birkinshaw et al., 2011; Figure 8 p. 1292). Any 
indication of convergence has been shown to be an artifact of sample 
size (e.g., Alila et al., 2009; Green & Alila, 2012; Kuraś et al., 2012; 
Schnorbus & Alila, 2013), suggesting that the no-effect threshold may 
persist indefinitely. A concept that is diametrically opposite to the 
dominant CP-based wisdom on forests and floods. 

Harvesting in the Deadman River and Joe Ross Creek basins only 
caused an increase in the mean with minimal influence on the variability 
of floods. This results in parallel-running pre-and post-harvest FFCs 
(Fig. 6). Although changes in frequency in this study have only been 
reported up to the 50-year return period flood event, considering out
comes from the studies mentioned above, it is expected that the har
vesting effect on floods extends beyond the 50-year return period. Fig. 6 
suggests that in both treatment basins, an ECA of 21% caused the 100- 
year flood event to increase in frequency by roughly ten times. More
over, taken in the context of previous FP-based studies, the substantive 
changes in frequency, induced by harvesting in the Deadman River and 
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Joe Ross Creek basins across all return periods, are highly plausible. 
The lack of converging FFCs can be explained by: (i) the inextricable 

relation between frequency and magnitude, where one cannot change 
without changing the other; (ii) the dependency of subsequent event- 
ranking (rank is a surrogate of frequency), where a change to a single 
event magnitude cannot occur without influencing the subsequently 
ranked events; and (iii) harvesting induced changes to stand and 
watershed-scale physics. As a reminder, floods are multiple and chancy 
(Karhausen, 2000, p. 59), whereby the flood frequency distribution is 
conditional on the probability distribution of each flood driver (e.g., 
snow, warming rate, rain, etc.). If harvesting causes a shift in the fre
quency distribution of one or more flood drivers, for example, an in
crease in the frequency of years with higher moisture input (increased 
snowpack), higher energy input (increased insolation), and a higher 
likelihood of snowmelt synchronization, there will be an increased 
likelihood that a year with even a modest snowpack coincides with that 
of a high warming rate. This translates to an increased likelihood for 
large flood events to be generated by years with a relatively shallow 
snowpack. This is further supported by Curry & Zwiers (2018) who 
found that some of the largest flood events in the Fraser River basin did 
not always coincide with the highest snowpack years. A similar argu
ment was articulated by Alila & Green (2014) and Duncan (1995) for 
rain environments, suggesting that medium magnitude rain events 
falling on high AMC conditions accounted for the increase in frequency 
for high return period flood events. Annual maximum rainfall events do 
not always generate the annual maximum flood peaks (e.g., Kim et al., 
2019; Preti et al., 2011). For example, Kim et al. (2019) found that a 7- 
year precipitation event falling on saturated soils could generate a 100- 
year flood, whereas a 200-year precipitation event falling on unsatu
rated soils may only result in a 15-year flood event. 

6. Conclusion 

Drawing on the emerging advances in nonstationary frequency 
analysis and attribution science, this study sought to further the devel
opment of a new stochastic analysis approach to detect, attribute, and 
quantify the effect of forest harvesting on floods in interior BC. More
over, this study sought to further the application of stochastic physics to 
evaluate the environmental controls and drivers of flood response and 
contribute to the growing science of attribution, which has a history of 
being handled, even in the wider hydrology literature, “rather sloppily” 
(Merz et al., 2012, p. 1385). 

Conventionally restricted to small experimental watersheds, the new 
role of the control watershed in nonstationary paired watershed analysis 
has enabled the size and proximity constraints of the control and 
treatment watersheds to be relaxed. This has enabled larger watersheds 

of more practical scales to be investigated in a controlled experimental 
setting for the first time in main-stream forest hydrology. 

Based on the final nonstationary models, floods in the Big Creek 
control watershed were found to be dominantly driven by the amount of 
snow on the ground and rain in the days leading up to the time of the 
peak of the freshet hydrograph. In the Deadman River and Joe Ross 
Creek treatment basins, floods were driven by the amount of snow on the 
ground, rain, and the warming rate. The greater influence of warming 
rate on floods in the treatment basins is thought to be caused by the 
conversion from longwave-to shortwave-dominated snowmelt following 
harvest. 

Due to the even aspect distribution, even spatial distribution of 
cutblocks, and abundance of lakes throughout the Deadman River 
watershed, forest harvesting only influenced the mean of the flood fre
quency distribution. This was expressed by an upward shift of the flood 
frequency curve thought to represent an increase in the amount of 
moisture available for melt caused by a deeper snowpack and an in
crease in the amount of energy reaching the snowpack following har
vest. Harvesting is not thought to have induced snowmelt 
synchronization, or if it had, was buffered by the abundant lakes 
throughout the watershed, and therefore did not influence the vari
ability of the flood frequency distribution. 

Despite no influence on the variability, harvesting-induced changes 
to the mean caused substantive changes in frequency. Contrary to out
comes from conventional CP-based studies on forests and floods, the 
effect of forest harvesting did not appear to decrease with increasing 
event and basin size. An ECA of 21% caused the mean of the flood fre
quency distribution to increase relative to fully forested conditions by 
38.1% and 84.2% at Deadman River and Joe Ross Creek, respectively. 
Consequently, the 7-year, 20-year, and 50-year flood events increased in 
frequency by approximately two, four, and six times in the Deadman 
River, and by four, five, and seven times in Joe Ross Creek, respectively. 
Additionally, a 21% ECA is expected to have caused the 100-year flood 
event to become approximately ten times more frequent in both basins. 

Forest harvesting caused changes in frequency to be greater for 
larger events. Additionally, smaller increases in the mean were required 
to induce similar changes in frequency for the larger (Deadman River) 
versus the smaller (Joe Ross Creek) basin. The relatively high sensitivity 
to harvest is dominantly due to the shallow-sloping FFC, characteristic 
of snowmelt-driven flood regimes (Green & Alila, 2012), which become 
milder in slope as basin size increases (Beckers et al., 2002; Blöschl & 
Sivapalan, 1997). It is this inherent nature, imposed by the probabilistic 
physics of the snowmelt-driven flood regime, which causes relatively 
minor increases in magnitude, especially in the upper tail of the distri
bution, to cause surprisingly large changes in frequency, a widely 
recognized precept among hydro-climatologists (Allen & Ingram, 2002 

Table 7 
Stochastic hydrology studies illustrate that only moderate changes in the mean and variability are required to induce substantive changes in frequency for large events. 
In cases where changes in the mean and/or variability were not explicitly reported, qualitative values were assigned (e.g., minor increase/decrease).  

Author Climate 
regime 

Data type Land-use change Δ mean Δ variability Effect on flood frequency 

Alila et al. (2009)a Snow Empirical 40% area harvested +30% –23% Δ from 30 yr to 14 yr event 
Birkinshaw et al. 

(2011) 
Rain Simulated 100% forested area harvested < than a 2x increase Minor increase 4x increase in 100 yr event, 

nearly 10x increase in 
1000 yr event 

Duncan (1995) Rain Empirical Comparison between pasture and pine- 
covered catchments 

3x increase Minor increase 10x increase in 50-year 
event 

Green & Alila (2012) Snow Empirical 33% to 40% area harvested in four 
catchments 

+35%, +23%, 
+15%, +11% 

+1%, − 12%, +19%, 
+18% 

Δ from 20 yr to 10 yr, 50 yr 
to 13 yr 

Kuraś et al. (2012) Snow Simulated 50% area harvested +9% Minor increase 5–6.7x increase in 100 yr 
event 

Reynard et al. 
(2001) 

Rain Simulated Afforestation to mitigate climate change 
impacts 

− 10% Minor decrease 10x decrease in 50 yr event 

Schnorbus & Alila 
(2013) 

Snow Simulated 50% area harvested +21% +13% 20x increase in 100 yr 
event  

a Only values for the 48-year record at Fools Creek were reported. 
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and references therein). Such sensitivity is a physically and practically 
important facet to the forest and flood relation that can only be revealed 
under a stochastic framework. The findings in this study further support 
the notion proposed by Green & Alila (2012) that the effects of logging 
on the magnitude–frequency relation is controlled not only by the har
vest rate but also the physiographic characteristics of the watershed and 
the spatial distribution of the cutblocks. 

The greatest limitation to this study is the relatively short flood re
cord. However, taken in a meta-analysis context with previous FP-based 
studies (e.g., Alila et al., 2009; Duncan, 1995; Green & Alila, 2012; Kuraś 
et al., 2012; Reynard et al., 2001; Schnorbus & Alila, 2013), the impact 
of harvesting on the most extreme floods making up the upper tail of the 
frequency distribution must be taken as highly plausible. Due to the 
esoteric nature of the statistics of extremes, only modest increases in the 
mean are required to induce surprisingly large changes in frequency 
(Katz, 1993; Katz & Brown, 1992; Wigley, 2009). Therefore, substantive 
changes in frequency are posited to occur even within the wide range of 
error associated with the model predicted changes in magnitude as a 
direct consequence of a relatively mild sloping and concave down flood 
frequency curve. 

The nonstationary approach to paired watershed studies enables a 
more realistic evaluation of the temporal evolution of harvesting in a 
watershed, by accounting for staggered harvesting practices over time, 
and subsequent forest regeneration following harvest which is of use to 
forest managers for future forest development planning. Moreover, once 
a suitable control watershed is established, it could be used for multiple 
opportunistic treatment basins within the same hydroclimate regime. 

Additional suggestions for future studies include: 1) increasing the 
sample size by developing deterministic hydrologic models to corrobo
rate or refute the predictions of observational non-stationary frequency 
analyses of the effect of logging on floods (e.g., Birkinshaw et al., 2011); 
2) using Monte Carlo experiments to investigate the relations between 
covariates and the GEV, or any other alternative distribution, parame
ters; 3) allowing the shape parameter to be nonstationary, particularly 
given that recent studies have demonstrated that forest harvesting may 
cause the shape parameter to change over time (e.g., McEachran et al., 
2021); 4) applying this method to experimental watersheds which have 
previously been evaluated under the stationarity assumption; 5) evalu
ating additional opportunistic watersheds which have not been previ
ously investigated in a controlled experimental setting; and 6) extending 
the application to evaluate other forms of natural and anthropogenic 
disturbances, such as wildfires, insect infestations, roads, and other 
silviculture practices (e.g., re/afforestation), and on other flow metrics 
such as low flows. 
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Andréassian, V., Lerat, J., Le Moine, N., Perrin, C., 2012. Neighbors: Nature’s own 
hydrological models. Journal of Hydrology 414–415, 49–58. https://doi.org/ 
10.1016/j.jhydrol.2011.10.007. 

Ashley, S.T., Ashley, W.S., 2008. Flood fatalities in the United States. Journal of Applied 
Meteorology and Climatology 47 (3), 805–818. https://doi.org/10.1175/ 
2007JAMC1611.1. 

Ayalew, T.B., Krajewski, W.F., 2017. Effect of river network geometry on flood 
frequency: A tale of two watersheds in Iowa. Journal of Hydrologic Engineering 22 
(8), 06017004. https://doi.org/10.1061/(asce)he.1943-5584.0001544. 

Ayalew, T.B., Krajewski, W.F., Mantilla, R., 2013. Exploring the rffect of reservoir 
storage on peak discharge frequency. Journal of Hydrologic Engineering 18 (12), 
1697–1708. https://doi.org/10.1061/(asce)he.1943-5584.0000721. 

Ayalew, T.B., Krajewski, W.F., Mantilla, R., 2015. Insights into expected changes in 
regulated flood frequencies due to the spatial configuration of flood retention ponds. 
Journal of Hydrologic Engineering 20 (10), 04015010. https://doi.org/10.1061/ 
(asce)he.1943-5584.0001173. 

Bathurst, J.C., Birkinshaw, S.J., Cisneros, F., Fallas, J., Iroumé, A., Iturraspe, R., 
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